{"title":"Germanium Single Crystals for Photonics","authors":"Grigory Kropotov, Vladimir Rogalin, Ivan Kaplunov","doi":"10.3390/cryst14090796","DOIUrl":null,"url":null,"abstract":"Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090796","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.