{"title":"Influence of the Acetylene Flow Rate and Process Pressure on the Carbon Deposition Behavior by Thermal Chemical Vapor Deposition Process","authors":"Gi-Hoon Kwon, Byoungho Choi, Young-Kook Lee, Kyoungil Moon","doi":"10.3390/cryst14090782","DOIUrl":null,"url":null,"abstract":"We used the chemical vapor deposition process to deposit carbon film at a high temperature (900 °C). The carbon films were deposited on AISI 1006 foils using an acetylene gas. We analyzed the carbon film deposited on the surface using Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy to define changes in the bonding structure of the carbon film. The results of Raman spectroscopy and high-resolution transmission electron microscopy revealed that as the acetylene flow rate increased, the shape of the deposited carbon film changed from graphene to graphite. In addition, in order to compare the quality of the carbon film in terms of mechanical and electrical properties, carbon films treated under various conditions were closely analyzed using nano-indenter and a sheet resistance meter. Therefore, the optimal condition (1 Torr-50 sccm) was selected in which graphene was uniformly deposited and had the lowest electrical resistance (500 Ω/sq) and highest hardness (12 GPa).","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090782","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
We used the chemical vapor deposition process to deposit carbon film at a high temperature (900 °C). The carbon films were deposited on AISI 1006 foils using an acetylene gas. We analyzed the carbon film deposited on the surface using Raman spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy to define changes in the bonding structure of the carbon film. The results of Raman spectroscopy and high-resolution transmission electron microscopy revealed that as the acetylene flow rate increased, the shape of the deposited carbon film changed from graphene to graphite. In addition, in order to compare the quality of the carbon film in terms of mechanical and electrical properties, carbon films treated under various conditions were closely analyzed using nano-indenter and a sheet resistance meter. Therefore, the optimal condition (1 Torr-50 sccm) was selected in which graphene was uniformly deposited and had the lowest electrical resistance (500 Ω/sq) and highest hardness (12 GPa).
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.