Koji Kobayashi, Ryosuke Okuyama, Takeshi Kadono, Ayumi Onaka-Masada, Ryo Hirose, Akihiro Suzuki, Sho Nagatomo, Yoshihiro Koga, Koji Sueoka, Kazunari Kurita
{"title":"Surface Recrystallization Model of Fully Amorphized C3H5-Molecular-Ion-Implanted Silicon Substrate","authors":"Koji Kobayashi, Ryosuke Okuyama, Takeshi Kadono, Ayumi Onaka-Masada, Ryo Hirose, Akihiro Suzuki, Sho Nagatomo, Yoshihiro Koga, Koji Sueoka, Kazunari Kurita","doi":"10.3390/cryst14090748","DOIUrl":null,"url":null,"abstract":"The surface recrystallization model of the fully amorphized C3H5-molecular-ion-implanted silicon (Si) substrate is investigated. Transmission electron microscopy is performed to observe the amorphous/crystalline interface near the C3H5-molecular-ion-implanted Si substrate surface after the subsequent recovery thermal annealing treatment. At a depth of high-concentration carbon of approximately 4.8 × 1020 atoms/cm3, recrystallization from the crystalline template to the surface by solid-phase epitaxial growth is partially delayed, and the activation energy was estimated to be 2.79 ± 0.14 eV. The change in the crystalline fraction of the fully amorphized C3H5-molecular-ion-implanted Si substrate surface is quantitatively evaluated from the binding energy of Si 2p spectra by X-ray photoelectron spectroscopy. Using the Kolmogorov–Johnson–Mehl–Avrami equation, the surface recrystallization of the fully amorphized C3H5-molecular-ion-implanted Si substrate is assumed to proceed two-dimensionally, and its activation energy is obtained as 2.71 ± 0.28 eV without the effect of carbon. Technology computer-aided design (TCAD) process simulations calculate recrystallization under the effect of high-concentration carbon and demonstrate the reach of some crystalline regions to the surface first. In the fully amorphized C3H5-molecular-ion-implanted Si substrate, it is considered that recrystallization is partially delayed due to high-concentration carbon and surface recrystallization proceeds two-dimensionally from some crystalline regions reaching the surface first.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090748","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The surface recrystallization model of the fully amorphized C3H5-molecular-ion-implanted silicon (Si) substrate is investigated. Transmission electron microscopy is performed to observe the amorphous/crystalline interface near the C3H5-molecular-ion-implanted Si substrate surface after the subsequent recovery thermal annealing treatment. At a depth of high-concentration carbon of approximately 4.8 × 1020 atoms/cm3, recrystallization from the crystalline template to the surface by solid-phase epitaxial growth is partially delayed, and the activation energy was estimated to be 2.79 ± 0.14 eV. The change in the crystalline fraction of the fully amorphized C3H5-molecular-ion-implanted Si substrate surface is quantitatively evaluated from the binding energy of Si 2p spectra by X-ray photoelectron spectroscopy. Using the Kolmogorov–Johnson–Mehl–Avrami equation, the surface recrystallization of the fully amorphized C3H5-molecular-ion-implanted Si substrate is assumed to proceed two-dimensionally, and its activation energy is obtained as 2.71 ± 0.28 eV without the effect of carbon. Technology computer-aided design (TCAD) process simulations calculate recrystallization under the effect of high-concentration carbon and demonstrate the reach of some crystalline regions to the surface first. In the fully amorphized C3H5-molecular-ion-implanted Si substrate, it is considered that recrystallization is partially delayed due to high-concentration carbon and surface recrystallization proceeds two-dimensionally from some crystalline regions reaching the surface first.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.