Discrete ripplet-II transform feature extraction and metaheuristic-optimized feature selection for enhanced glaucoma detection in fundus images using least square-support vector machine
{"title":"Discrete ripplet-II transform feature extraction and metaheuristic-optimized feature selection for enhanced glaucoma detection in fundus images using least square-support vector machine","authors":"Santosh Kumar Sharma, Debendra Muduli, Adyasha Rath, Sujata Dash, Ganapati Panda, Achyut Shankar, Dinesh Chandra Dobhal","doi":"10.1007/s11042-024-19974-3","DOIUrl":null,"url":null,"abstract":"<p>Recently, significant progress has been made in developing computer-aided diagnosis (CAD) systems for identifying glaucoma abnormalities using fundus images. Despite their drawbacks, methods for extracting features such as wavelets and their variations, along with classifier like support vector machines (SVM), are frequently employed in such systems. This paper introduces a practical and enhanced system for detecting glaucoma in fundus images. The proposed model adresses the chanallages encountered by other existing models in recent litrature. Initially, we have employed contrast limited adaputive histogram equalization (CLAHE) to enhanced the visualization of input fundus inmages. Then, the discrete ripplet-II transform (DR2T) employing a degree of 2 for feature extraction. Afterwards, we have utilized a golden jackal optimization algorithm (GJO) employed to select the optimal features to reduce the dimension of the extracted feature vector. For classification purposes, we have employed a least square support vector machine (LS-SVM) equipped with three kernels: linear, polynomial, and radial basis function (RBF). This setup has been utilized to classify fundus images as either indicative of glaucoma or healthy. The proposed method is validated with the current state-of-the-art models on two standard datasets, namely, G1020 and ORIGA. The results obtained from our experimental result demonstrate that our best suggested approach DR2T+GJO+LS-SVM-RBF obtains better classification accuracy 93.38% and 97.31% for G1020 and ORIGA dataset with less number of features. It establishes a more streamlined network layout compared to conventional classifiers.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-19974-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, significant progress has been made in developing computer-aided diagnosis (CAD) systems for identifying glaucoma abnormalities using fundus images. Despite their drawbacks, methods for extracting features such as wavelets and their variations, along with classifier like support vector machines (SVM), are frequently employed in such systems. This paper introduces a practical and enhanced system for detecting glaucoma in fundus images. The proposed model adresses the chanallages encountered by other existing models in recent litrature. Initially, we have employed contrast limited adaputive histogram equalization (CLAHE) to enhanced the visualization of input fundus inmages. Then, the discrete ripplet-II transform (DR2T) employing a degree of 2 for feature extraction. Afterwards, we have utilized a golden jackal optimization algorithm (GJO) employed to select the optimal features to reduce the dimension of the extracted feature vector. For classification purposes, we have employed a least square support vector machine (LS-SVM) equipped with three kernels: linear, polynomial, and radial basis function (RBF). This setup has been utilized to classify fundus images as either indicative of glaucoma or healthy. The proposed method is validated with the current state-of-the-art models on two standard datasets, namely, G1020 and ORIGA. The results obtained from our experimental result demonstrate that our best suggested approach DR2T+GJO+LS-SVM-RBF obtains better classification accuracy 93.38% and 97.31% for G1020 and ORIGA dataset with less number of features. It establishes a more streamlined network layout compared to conventional classifiers.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms