A systematic review of multilabel chest X-ray classification using deep learning

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Multimedia Tools and Applications Pub Date : 2024-09-12 DOI:10.1007/s11042-024-20172-4
Uswatun Hasanah, Jenq-Shiou Leu, Cries Avian, Ihsanul Azmi, Setya Widyawan Prakosa
{"title":"A systematic review of multilabel chest X-ray classification using deep learning","authors":"Uswatun Hasanah, Jenq-Shiou Leu, Cries Avian, Ihsanul Azmi, Setya Widyawan Prakosa","doi":"10.1007/s11042-024-20172-4","DOIUrl":null,"url":null,"abstract":"<p>Chest X-ray scans are one of the most often used diagnostic tools for identifying chest diseases. However, identifying diseases in X-ray images needs experienced technicians and is frequently noted as a time-consuming process with varying levels of interpretation. In particular circumstances, disease identification through images is a challenge for human observers. Recent advances in deep learning have opened up new possibilities for using this technique to diagnose diseases. However, further implementation requires prior knowledge of strategy and appropriate architecture design. Revealing this information, will enable faster implementation and encounter potential issues produced by specific designs, especially in multilabel classification, which is challenging compared to single-label tasks. This systematic review of all the approaches published in the literature will assist researchers in developing improved methods of whole chest disease detection. The study focuses on the deep learning methods, publically accessible datasets, hyperparameters, and performance metrics employed by various researchers in classifying multilabel chest X-ray images. The findings of this study provide a complete overview of the current state of the art, highlighting significant practical aspects of the approaches studied. Distinctive results highlighting the potential enhancements and beneficial uses of deep learning in multilabel chest disease identification are presented.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20172-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Chest X-ray scans are one of the most often used diagnostic tools for identifying chest diseases. However, identifying diseases in X-ray images needs experienced technicians and is frequently noted as a time-consuming process with varying levels of interpretation. In particular circumstances, disease identification through images is a challenge for human observers. Recent advances in deep learning have opened up new possibilities for using this technique to diagnose diseases. However, further implementation requires prior knowledge of strategy and appropriate architecture design. Revealing this information, will enable faster implementation and encounter potential issues produced by specific designs, especially in multilabel classification, which is challenging compared to single-label tasks. This systematic review of all the approaches published in the literature will assist researchers in developing improved methods of whole chest disease detection. The study focuses on the deep learning methods, publically accessible datasets, hyperparameters, and performance metrics employed by various researchers in classifying multilabel chest X-ray images. The findings of this study provide a complete overview of the current state of the art, highlighting significant practical aspects of the approaches studied. Distinctive results highlighting the potential enhancements and beneficial uses of deep learning in multilabel chest disease identification are presented.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习对多标签胸部 X 光片分类进行系统回顾
胸部 X 光扫描是识别胸部疾病最常用的诊断工具之一。然而,从 X 光图像中识别疾病需要经验丰富的技术人员,而且经常被认为是一个耗时的过程,解读的程度也不尽相同。在特殊情况下,通过图像识别疾病对人类观察者来说是一项挑战。深度学习的最新进展为使用这种技术诊断疾病提供了新的可能性。然而,进一步的实施需要事先了解策略和适当的架构设计。揭示这些信息将有助于更快地实施,并解决特定设计所产生的潜在问题,特别是在多标签分类方面,这与单标签任务相比具有挑战性。本研究对文献中发表的所有方法进行了系统回顾,这将有助于研究人员开发出更好的全胸疾病检测方法。本研究的重点是深度学习方法、可公开访问的数据集、超参数以及不同研究人员在对多标签胸部 X 光图像进行分类时采用的性能指标。研究结果全面概述了当前的技术水平,突出强调了所研究方法的重要实用性。研究结果突出了深度学习在多标签胸部疾病识别中的潜在优势和有益用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
期刊最新文献
MeVs-deep CNN: optimized deep learning model for efficient lung cancer classification Text-driven clothed human image synthesis with 3D human model estimation for assistance in shopping Hybrid golden jackal fusion based recommendation system for spatio-temporal transportation's optimal traffic congestion and road condition classification Deep-Dixon: Deep-Learning frameworks for fusion of MR T1 images for fat and water extraction Unified pre-training with pseudo infrared images for visible-infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1