{"title":"SMOTE-Based deep network with adaptive boosted sooty for the detection and classification of type 2 diabetes mellitus","authors":"Phani Kumar Immadisetty, C. Rajabhushanam","doi":"10.1007/s11042-024-19770-z","DOIUrl":null,"url":null,"abstract":"<p>Type 2 diabetes (T2D) is a prolonged disease caused by abnormal rise in glucose levels due to poor insulin production in the pancreas. However, the detection and classification of this type of disease is very challenging and requires effective techniques for learning the T2D features. Therefore, this study proposes the use of a novel hybridized deep learning-based technique to automatically detect and categorize T2D by effectively learning disease attributes. First, missing value imputation and a normalization-based pre-processing phase are introduced to improve the quality of the data. The Adaptive Boosted Sooty Tern Optimization (Adap-BSTO) approach is then used to select the best features while minimizing complexity. After that, the Synthetic Minority Oversampling Technique (SMOTE) is used to verify that the database classes are evenly distributed. Finally, the Deep Convolutional Attention-based Bidirectional Recurrent Neural Network (DCA-BiRNN) technique is proposed to detect and classify the presence and absence of T2D disease accurately. The proposed study is instigated via the Python platform, and two publicly available PIMA Indian and HFD databases are utilized in this study. Accuracy, NPV, kappa score, Mathew's correlation coefficient (MCC), false discovery rate (FDR), and time complexity are among the assessment metrics examined and compared to prior research. For the PIMA Indian dataset, the proposed method obtains an overall accuracy of 99.6%, FDR of 0.0038, kappa of 99.24%, and NPV of 99.6%. For the HFD dataset, the proposed method acquires an overall accuracy of 99.5%, FDR of 0.0052, kappa of 99%, and NPV of 99.4%, respectively.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-19770-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) is a prolonged disease caused by abnormal rise in glucose levels due to poor insulin production in the pancreas. However, the detection and classification of this type of disease is very challenging and requires effective techniques for learning the T2D features. Therefore, this study proposes the use of a novel hybridized deep learning-based technique to automatically detect and categorize T2D by effectively learning disease attributes. First, missing value imputation and a normalization-based pre-processing phase are introduced to improve the quality of the data. The Adaptive Boosted Sooty Tern Optimization (Adap-BSTO) approach is then used to select the best features while minimizing complexity. After that, the Synthetic Minority Oversampling Technique (SMOTE) is used to verify that the database classes are evenly distributed. Finally, the Deep Convolutional Attention-based Bidirectional Recurrent Neural Network (DCA-BiRNN) technique is proposed to detect and classify the presence and absence of T2D disease accurately. The proposed study is instigated via the Python platform, and two publicly available PIMA Indian and HFD databases are utilized in this study. Accuracy, NPV, kappa score, Mathew's correlation coefficient (MCC), false discovery rate (FDR), and time complexity are among the assessment metrics examined and compared to prior research. For the PIMA Indian dataset, the proposed method obtains an overall accuracy of 99.6%, FDR of 0.0038, kappa of 99.24%, and NPV of 99.6%. For the HFD dataset, the proposed method acquires an overall accuracy of 99.5%, FDR of 0.0052, kappa of 99%, and NPV of 99.4%, respectively.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms