EIGP: document-level event argument extraction with information enhancement generated based on prompts

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-08-23 DOI:10.1007/s10115-024-02213-4
Kai Liu, Hui Zhao, Zicong Wang, Qianxi Hou
{"title":"EIGP: document-level event argument extraction with information enhancement generated based on prompts","authors":"Kai Liu, Hui Zhao, Zicong Wang, Qianxi Hou","doi":"10.1007/s10115-024-02213-4","DOIUrl":null,"url":null,"abstract":"<p>The event argument extraction (EAE) task primarily aims to identify event arguments and their specific roles within a given event. Existing generation-based event argument extraction models, including the recent ones focused on document-level event argument extraction, emphasize the construction of prompt templates and entity representations. However, they overlook the inadequate comprehension of model in document context structure information and the impact of arguments spanning a wide range on event argument extraction. Consequently, this results in reduced model detection accuracy. In this paper, we propose a prompt-based generation event argument extraction model with the ability of document structure information enhancement for document-level event argument extraction task based on prompt generation. Specifically, we use sentence abstract meaning representation (AMR) to represent the contextual structural information of the document, and then remove the redundant parts of the structural information through constraints to obtain the constraint graph with the document information. Finally, we use the encoder to convert the graph into the corresponding dense vector. We inject these vectors with contextual structural information into the prompt-based generation EAE model in a prefixed manner. When contextual information and prompt templates interact at the attention layer of the model, the generated structural information improves the generation by affecting attention. We conducted experiments on RAMS and WIKIEVENTS datasets, and the results show that our model achieves excellent results compared with the current advanced generative EAE model.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02213-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The event argument extraction (EAE) task primarily aims to identify event arguments and their specific roles within a given event. Existing generation-based event argument extraction models, including the recent ones focused on document-level event argument extraction, emphasize the construction of prompt templates and entity representations. However, they overlook the inadequate comprehension of model in document context structure information and the impact of arguments spanning a wide range on event argument extraction. Consequently, this results in reduced model detection accuracy. In this paper, we propose a prompt-based generation event argument extraction model with the ability of document structure information enhancement for document-level event argument extraction task based on prompt generation. Specifically, we use sentence abstract meaning representation (AMR) to represent the contextual structural information of the document, and then remove the redundant parts of the structural information through constraints to obtain the constraint graph with the document information. Finally, we use the encoder to convert the graph into the corresponding dense vector. We inject these vectors with contextual structural information into the prompt-based generation EAE model in a prefixed manner. When contextual information and prompt templates interact at the attention layer of the model, the generated structural information improves the generation by affecting attention. We conducted experiments on RAMS and WIKIEVENTS datasets, and the results show that our model achieves excellent results compared with the current advanced generative EAE model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EIGP:文档级事件论据提取,根据提示生成信息增强功能
事件论据提取(EAE)任务的主要目的是识别事件论据及其在给定事件中的具体作用。现有的基于生成的事件论据抽取模型,包括最近专注于文档级事件论据抽取的模型,都强调构建提示模板和实体表征。然而,它们忽视了文档上下文结构信息中对模型的理解不足,以及跨度较大的参数对事件参数提取的影响。因此,这导致了模型检测准确率的降低。本文针对基于提示生成的文档级事件论据提取任务,提出了一种具有文档结构信息增强能力的基于提示生成的事件论据提取模型。具体来说,我们使用句子抽象意义表示法(AMR)来表示文档的上下文结构信息,然后通过约束去除结构信息中的冗余部分,得到带有文档信息的约束图。最后,我们使用编码器将图转换成相应的密集向量。我们将这些带有上下文结构信息的向量以前缀的方式注入到基于提示的生成 EAE 模型中。当上下文信息和提示模板在模型的注意力层相互作用时,生成的结构信息会通过影响注意力来改善生成效果。我们在 RAMS 和 WIKIEVENTS 数据集上进行了实验,结果表明,与目前先进的生成式 EAE 模型相比,我们的模型取得了优异的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1