Ghufran Ahmad Khan, Jalaluddin Khan, Taushif Anwar, Zaid Al-Huda, Bassoma Diallo, Naved Ahmad
{"title":"Complementary incomplete weighted concept factorization methods for multi-view clustering","authors":"Ghufran Ahmad Khan, Jalaluddin Khan, Taushif Anwar, Zaid Al-Huda, Bassoma Diallo, Naved Ahmad","doi":"10.1007/s10115-024-02197-1","DOIUrl":null,"url":null,"abstract":"<p>The main aim of traditional multi-view clustering is to categorize data into separate clusters under the assumption that all views are fully available. However, practical scenarios often arise where not all aspects of the data are accessible, which hampers the efficacy of conventional multi-view clustering techniques. Recent advancements have made significant progress in addressing the incompleteness in multi-view data clustering. Still, current incomplete multi-view clustering methods overlooked a number of important factors, such as providing a consensus representation across the kernel space, dealing with over-fitting issue from different views, and looking at how these multiple views relate to each other at the same time. To deal these challenges, we introduced an innovative multi-view clustering algorithm to manage incomplete data from multiple perspectives. Additionally, we have introduced a novel objective function incorporating a weighted concept factorization technique to tackle the absence of data instances within each incomplete viewpoint. We used a co-regularization constraint to learn a common shared structure from different points of view and a smooth regularization term to prevent view over-fitting. It is noteworthy that the proposed objective function is inherently non-convex, presenting optimization challenges. To obtain the optimal solution, we have implemented an iterative optimization approach to converge the local minima for our method. To underscore the effectiveness and validation of our approach, we conducted experiments using real-world datasets against state-of-the-art methods for comparative evaluation.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"57 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02197-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of traditional multi-view clustering is to categorize data into separate clusters under the assumption that all views are fully available. However, practical scenarios often arise where not all aspects of the data are accessible, which hampers the efficacy of conventional multi-view clustering techniques. Recent advancements have made significant progress in addressing the incompleteness in multi-view data clustering. Still, current incomplete multi-view clustering methods overlooked a number of important factors, such as providing a consensus representation across the kernel space, dealing with over-fitting issue from different views, and looking at how these multiple views relate to each other at the same time. To deal these challenges, we introduced an innovative multi-view clustering algorithm to manage incomplete data from multiple perspectives. Additionally, we have introduced a novel objective function incorporating a weighted concept factorization technique to tackle the absence of data instances within each incomplete viewpoint. We used a co-regularization constraint to learn a common shared structure from different points of view and a smooth regularization term to prevent view over-fitting. It is noteworthy that the proposed objective function is inherently non-convex, presenting optimization challenges. To obtain the optimal solution, we have implemented an iterative optimization approach to converge the local minima for our method. To underscore the effectiveness and validation of our approach, we conducted experiments using real-world datasets against state-of-the-art methods for comparative evaluation.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.