Aspect-based sentiment analysis: approaches, applications, challenges and trends

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-08-14 DOI:10.1007/s10115-024-02200-9
Deena Nath, Sanjay K. Dwivedi
{"title":"Aspect-based sentiment analysis: approaches, applications, challenges and trends","authors":"Deena Nath, Sanjay K. Dwivedi","doi":"10.1007/s10115-024-02200-9","DOIUrl":null,"url":null,"abstract":"<p>Sentiment analysis (SA) is a technique that employs natural language processing to determine the function of mining methodically, extract, analyse and comprehend people’s thoughts, feelings, personal opinions and perceptions as well as their reactions and attitude regarding various subjects such as topics, commodities and various other products and services. However, it only reveals the overall sentiment. Unlike SA, the aspect-based sentiment analysis (ABSA) study categorizes a text into distinct components and determines the appropriate sentiment, which is more reliable in its predictions. Hence, ABSA is essential to study and break down texts into various service elements. It then assigns the appropriate sentiment polarity (positive, negative or neutral) for every aspect. In this paper, the main task is to critically review the research outcomes to look at the various techniques, methods and features used for ABSA. After giving brief introduction of SA in order to establish a clear relationship between SA and ABSA, we focussed on approaches, applications, challenges and trends in ABSA research.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"50 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02200-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis (SA) is a technique that employs natural language processing to determine the function of mining methodically, extract, analyse and comprehend people’s thoughts, feelings, personal opinions and perceptions as well as their reactions and attitude regarding various subjects such as topics, commodities and various other products and services. However, it only reveals the overall sentiment. Unlike SA, the aspect-based sentiment analysis (ABSA) study categorizes a text into distinct components and determines the appropriate sentiment, which is more reliable in its predictions. Hence, ABSA is essential to study and break down texts into various service elements. It then assigns the appropriate sentiment polarity (positive, negative or neutral) for every aspect. In this paper, the main task is to critically review the research outcomes to look at the various techniques, methods and features used for ABSA. After giving brief introduction of SA in order to establish a clear relationship between SA and ABSA, we focussed on approaches, applications, challenges and trends in ABSA research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方面的情感分析:方法、应用、挑战和趋势
情感分析(Sentiment Analysis,SA)是一种利用自然语言处理技术来确定挖掘功能的技术,它有条不紊地提取、分析和理解人们的思想、情感、个人观点和看法,以及他们对各种主题(如话题、商品和其他各种产品和服务)的反应和态度。然而,它只能揭示整体情感。与情感分析不同,基于方面的情感分析(ABSA)研究将文本分为不同的组成部分,并确定相应的情感,其预测结果更为可靠。因此,ABSA 对于研究和将文本分解为各种服务元素至关重要。然后,它为每个方面分配适当的情感极性(正面、负面或中性)。本文的主要任务是批判性地回顾研究成果,研究 ABSA 所使用的各种技术、方法和特征。在简要介绍 SA 以明确 SA 与 ABSA 之间的关系之后,我们重点讨论了 ABSA 研究的方法、应用、挑战和趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1