A nanohybrid-based smartphone-compatible high performance electrochemical glucose sensor

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-09-04 DOI:10.1016/j.mtchem.2024.102282
K Theyagarajan, Buddolla Anantha Lakshmi, Chaehyun Kim, Young-Joon Kim
{"title":"A nanohybrid-based smartphone-compatible high performance electrochemical glucose sensor","authors":"K Theyagarajan, Buddolla Anantha Lakshmi, Chaehyun Kim, Young-Joon Kim","doi":"10.1016/j.mtchem.2024.102282","DOIUrl":null,"url":null,"abstract":"A cost-effective and low-potential smartphone-compatible electrochemical sensor was constructed using a nanohybrid for the sensing of glucose in human and animal serum. The nanohybrid composed of gold nanoparticle (GNP) decorated cobalt hexacyanoferrate (CHCF) modified ZIF-67 (cobalt metal organic framework, CMOF) was synthesized and characterized by FTIR, XRD, and SEM with EDX analysis. The electrochemical characteristics of the nanohybrid were investigated by depositing the nanohybrid over a conventional glassy carbon electrode (GCE) and performing cyclic voltammetry, which revealed a stable redox peak with a formal potential of +0.23 V, corresponding to Co redox couple in GNP–CHCF–CMOF. Thus, developed sensor was utilized for the electrochemical glucose detection, which showed exceptional electrocatalytic activity over a linear detection range from 8.33 to 3793 μM with a low detection limit of 0.96 μM at a low potential of +0.35 V. Furthermore, the GNP–CHCF–CMOF/GCE sensor was employed for the detection of glucose spiked in human and rabbit serum samples, which showed excellent recoveries. A portable measurement device was fabricated which showed the real-time monitoring of glucose in a smartphone. This novel approach paves the way for the design and fabrication of cost-effective, low-potential sensors, which would reduce overall costs and enhance the performance of sensing devices.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"50 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102282","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A cost-effective and low-potential smartphone-compatible electrochemical sensor was constructed using a nanohybrid for the sensing of glucose in human and animal serum. The nanohybrid composed of gold nanoparticle (GNP) decorated cobalt hexacyanoferrate (CHCF) modified ZIF-67 (cobalt metal organic framework, CMOF) was synthesized and characterized by FTIR, XRD, and SEM with EDX analysis. The electrochemical characteristics of the nanohybrid were investigated by depositing the nanohybrid over a conventional glassy carbon electrode (GCE) and performing cyclic voltammetry, which revealed a stable redox peak with a formal potential of +0.23 V, corresponding to Co redox couple in GNP–CHCF–CMOF. Thus, developed sensor was utilized for the electrochemical glucose detection, which showed exceptional electrocatalytic activity over a linear detection range from 8.33 to 3793 μM with a low detection limit of 0.96 μM at a low potential of +0.35 V. Furthermore, the GNP–CHCF–CMOF/GCE sensor was employed for the detection of glucose spiked in human and rabbit serum samples, which showed excellent recoveries. A portable measurement device was fabricated which showed the real-time monitoring of glucose in a smartphone. This novel approach paves the way for the design and fabrication of cost-effective, low-potential sensors, which would reduce overall costs and enhance the performance of sensing devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米杂化技术的智能手机兼容型高性能电化学葡萄糖传感器
利用纳米杂化技术构建了一种成本低、电位低、与智能手机兼容的电化学传感器,用于检测人和动物血清中的葡萄糖。合成了由金纳米粒子(GNP)装饰的六氰基铁酸钴(CHCF)修饰的 ZIF-67(钴金属有机框架,CMOF)组成的纳米杂化物,并通过傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和带有 EDX 分析的扫描电镜对其进行了表征。通过将纳米杂化物沉积在传统的玻璃碳电极(GCE)上并进行循环伏安法测试,研究了纳米杂化物的电化学特性,结果表明在 GNP-CHCF-CMOF 中存在一个形式电位为 +0.23 V 的稳定氧化还原峰,与钴氧化还原对偶相对应。因此,所开发的传感器被用于电化学葡萄糖检测,在 8.33 至 3793 μM 的线性检测范围内显示出卓越的电催化活性,在 +0.35 V 的低电位下,检测限低至 0.96 μM。此外,GNP-CHCF-CMOF/GCE 传感器还被用于检测人和兔子血清样品中的葡萄糖,其回收率极高。研究人员还制作了一种便携式测量装置,可在智能手机中实时监测葡萄糖。这种新方法为设计和制造具有成本效益的低电位传感器铺平了道路,从而降低了总体成本并提高了传感设备的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1