RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-09-04 DOI:10.1016/j.mtchem.2024.102287
Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou
{"title":"RGB-tricolor multimodal luminescence of Ce3+ and Mn2+ in Mg2Al4Si5O18 via site occupancy engineering for anticounterfeiting applications","authors":"Rongfu Zhou, Dexiu Hua, Bomei Liu, MingSheng Guo, Quanfeng Li, Jingwei Li, Tingting Deng, Jianbang Zhou","doi":"10.1016/j.mtchem.2024.102287","DOIUrl":null,"url":null,"abstract":"Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"59 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal luminescent materials have shown important applications in anti-counterfeiting and information encryption, however, mostly difficult to adjust optical properties with the structure, which leads to relatively constant emission position and less selectable excitation wavelength. Herein, Ce and Mn co-doped MgAlSiO phosphors are designed for the applications in RGB-tricolor multimodal anti-counterfeiting. Due to site occupancies, energy transfer and different thermal behaviors of Ce and Mn emissions, the emitting color of MgAlSiO: Ce, Mn is rich and tunable with different excitation wavelengths, doping concentrations and temperatures. The site occupancies of Ce and Mn are clarified with crystal field analysis and in-depth into transitions energies of Ce and Mn. The energy transfer mechanism between Ce and Mn is analyzed via Inokuti-Hirayama model. The difference of thermal stabilities of Ce and Mn emissions is interpreted with construction of vacuum referred binding energy scheme. The as-designed molds of information encryption and decryption with MgAlSiO: Ce, Mn phosphors demonstrate the potential applications in anti-counterfeiting. The work provides an effective way for exploring Ce and Mn doped phosphors with RBG-tricolor multimodal luminescence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过位点占位工程实现 Mg2Al4Si5O18 中 Ce3+ 和 Mn2+ 的 RGB 三色多模式发光,用于防伪应用
多模态发光材料在防伪和信息加密领域具有重要的应用前景,但其光学性质大多难以随结构调整,导致发射位置相对固定,激发波长可选择性较差。本文设计了掺杂铈和锰的 MgAlSiO 荧光粉,用于 RGB 三色多模态防伪。由于铈和锰的位点占位、能量传递和不同的热行为,MgAlSiO 荧光粉的发光颜色具有丰富的可调性:MgAlSiO:Ce、Mn 的发光颜色丰富,并可在不同的激发波长、掺杂浓度和温度下进行调谐。通过晶场分析澄清了 Ce 和 Mn 的位点占有率,并深入研究了 Ce 和 Mn 的跃迁能量。通过 Inokuti-Hirayama 模型分析了 Ce 和 Mn 之间的能量传递机制。通过构建真空结合能方案,解释了 Ce 和 Mn 辐射热稳定性的差异。用 MgAlSiO:Ce、Mn 荧光粉设计的信息加密和解密模具展示了在防伪领域的潜在应用。这项研究为探索具有 RBG 三色多模式发光的掺铈和锰荧光粉提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1