Increase the inversion degree in Er-doped MgGa2O4 spinel nanofilms to obtain strong electroluminescence

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-08-30 DOI:10.1016/j.mtchem.2024.102278
Xinliang Guo, Hongyi Jin, Zejun Ye, Zhimin Yu, Yang Yang, Jiaming Sun
{"title":"Increase the inversion degree in Er-doped MgGa2O4 spinel nanofilms to obtain strong electroluminescence","authors":"Xinliang Guo, Hongyi Jin, Zejun Ye, Zhimin Yu, Yang Yang, Jiaming Sun","doi":"10.1016/j.mtchem.2024.102278","DOIUrl":null,"url":null,"abstract":"The GaO/MgO/ErO nanolaminates are fabricated by atomic layer deposition and crystallized into Er-doped MgGaO spinel (MGS:Er) nanofilms after annealing, with their electroluminescence (EL) performance characterized. The annealing above 600 °C achieves the polycrystalline spinel nanofilm, and the crystallization is promoted by the higher annealing temperature and GaO/MgO ratio. The dopant Er ions preferably substitute into the octahedron sites occupied by Ga ions in ordinary spinel and Mg in anti-spinel lattice, while the inversion degree is confirmed to increase with the reduction of GaO/MgO ratio and annealing temperature, resulting the relatively enhanced secondary EL at 1542 nm. This perturbation by Er-substitution into anti-spinel sites improves the emission intensity and excitation efficiencies, the main EL emission peaking at 1531 nm from the optimal MGS:Er device exhibits the excitation efficiency reaching 5.8 %, with the enhanced electrical injection realizing the maximum EL intensity above 17.3 mW/cm. The fluorescence lifetime of these MGS:Er devices is established in the range of 371–760 μs, which decreases mainly with the Er concentrations. The prototype device using the near-stoichiometric GaO/MgO ratio shows the operation time of 1.12 × 10 s. This work explores the fabrication of Si-based spinel nanofilms with designed composition and special microstructure, and their practical application in optoelectronics.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"70 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102278","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The GaO/MgO/ErO nanolaminates are fabricated by atomic layer deposition and crystallized into Er-doped MgGaO spinel (MGS:Er) nanofilms after annealing, with their electroluminescence (EL) performance characterized. The annealing above 600 °C achieves the polycrystalline spinel nanofilm, and the crystallization is promoted by the higher annealing temperature and GaO/MgO ratio. The dopant Er ions preferably substitute into the octahedron sites occupied by Ga ions in ordinary spinel and Mg in anti-spinel lattice, while the inversion degree is confirmed to increase with the reduction of GaO/MgO ratio and annealing temperature, resulting the relatively enhanced secondary EL at 1542 nm. This perturbation by Er-substitution into anti-spinel sites improves the emission intensity and excitation efficiencies, the main EL emission peaking at 1531 nm from the optimal MGS:Er device exhibits the excitation efficiency reaching 5.8 %, with the enhanced electrical injection realizing the maximum EL intensity above 17.3 mW/cm. The fluorescence lifetime of these MGS:Er devices is established in the range of 371–760 μs, which decreases mainly with the Er concentrations. The prototype device using the near-stoichiometric GaO/MgO ratio shows the operation time of 1.12 × 10 s. This work explores the fabrication of Si-based spinel nanofilms with designed composition and special microstructure, and their practical application in optoelectronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高掺杂 Er 的 MgGa2O4 尖晶石纳米薄膜的反转度以获得强电致发光性能
通过原子层沉积制备了 GaO/MgO/ErO 纳米层压板,并在退火后结晶成掺铒 MgGaO 尖晶石(MGS:Er)纳米薄膜,其电致发光(EL)性能得到了表征。600 °C 以上的退火温度可获得多晶尖晶石纳米薄膜,较高的退火温度和 GaO/MgO 比率可促进结晶。掺杂剂 Er 离子优先取代了普通尖晶石中 Ga 离子和反尖晶石晶格中 Mg 离子占据的八面体位点,而反转程度则随着 GaO/MgO 比率和退火温度的降低而增加,从而导致 1542 纳米波长的二次电致发光相对增强。Er 取代反尖晶石位点的扰动提高了发射强度和激发效率,最佳 MGS:Er 器件在 1531 nm 处的主要 EL 发射峰值的激发效率达到 5.8%,增强的电注入实现了 17.3 mW/cm 以上的最大 EL 强度。这些 MGS:Er 器件的荧光寿命为 371-760 μs,主要随 Er 浓度的增加而降低。这项研究探索了具有设计成分和特殊微观结构的硅基尖晶石纳米薄膜的制备及其在光电子领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1