Combining linear and cyclic sulfones as a strategy for elaborating more efficient high-dielectric polymer materials: A second case of dipolar glass copolymers
Sebastian Bonardd, Ángel Alegría, Jon Maiz, David Díaz Díaz
{"title":"Combining linear and cyclic sulfones as a strategy for elaborating more efficient high-dielectric polymer materials: A second case of dipolar glass copolymers","authors":"Sebastian Bonardd, Ángel Alegría, Jon Maiz, David Díaz Díaz","doi":"10.1016/j.mtchem.2024.102268","DOIUrl":null,"url":null,"abstract":"Motivated by the excellent features exhibited by sulfone functional groups in the development of high-dielectric polymer materials, this work assesses the combination of linear and cyclic sulfone structures through copolymerization to prepare novel polymer materials exhibiting high dielectric constants (ԑ'), low dissipative behavior, and improved thermal properties. Five new polymethacrylate-based copolymers with varying compositions were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The correct structure and macromolecular nature of the devised materials were confirmed by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (H/C NMR), and gel permeation chromatography (GPC), while their thermal properties were evaluated using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). All specimens exhibited adequate thermal properties for most capacitor applications in terms of onset degradation (T) and glass transition (T) temperatures. All materials degraded well above 250 °C, with increased T and T values depending on the final composition of the cyclic sulfone monomer in the material. The incorporation of cyclic sulfones not only increased the thermal robustness of the specimens but also raised their T values to as high as 189 °C, notably expanding the range of temperatures where these systems can operate without dissipative phenomena. More importantly, broadband dielectric spectroscopy (BDS) revealed that all samples exhibited dielectric properties notably superior to those of conventional polymer materials, with high ԑ' values between 6.0 and 8.9 (at 25 °C and 1 Hz) and low loss factors (Tan(δ) < 0.018). Overall, the present work successfully demonstrates the advantages of including cyclic structures with high dipole moments in polymeric backbones, offering a new strategy to enhance the thermal and dielectric properties of high-dielectric polymer materials.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"41 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102268","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the excellent features exhibited by sulfone functional groups in the development of high-dielectric polymer materials, this work assesses the combination of linear and cyclic sulfone structures through copolymerization to prepare novel polymer materials exhibiting high dielectric constants (ԑ'), low dissipative behavior, and improved thermal properties. Five new polymethacrylate-based copolymers with varying compositions were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The correct structure and macromolecular nature of the devised materials were confirmed by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (H/C NMR), and gel permeation chromatography (GPC), while their thermal properties were evaluated using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). All specimens exhibited adequate thermal properties for most capacitor applications in terms of onset degradation (T) and glass transition (T) temperatures. All materials degraded well above 250 °C, with increased T and T values depending on the final composition of the cyclic sulfone monomer in the material. The incorporation of cyclic sulfones not only increased the thermal robustness of the specimens but also raised their T values to as high as 189 °C, notably expanding the range of temperatures where these systems can operate without dissipative phenomena. More importantly, broadband dielectric spectroscopy (BDS) revealed that all samples exhibited dielectric properties notably superior to those of conventional polymer materials, with high ԑ' values between 6.0 and 8.9 (at 25 °C and 1 Hz) and low loss factors (Tan(δ) < 0.018). Overall, the present work successfully demonstrates the advantages of including cyclic structures with high dipole moments in polymeric backbones, offering a new strategy to enhance the thermal and dielectric properties of high-dielectric polymer materials.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.