Gege Shi, Jiuming Xiong, Weijun Wu, Zhiyong Guo, Sui Wang, Jie Mao
{"title":"High-strength conductive hydrogels based on the Hofmeister effect for friction nanogenerators","authors":"Gege Shi, Jiuming Xiong, Weijun Wu, Zhiyong Guo, Sui Wang, Jie Mao","doi":"10.1016/j.mtchem.2024.102266","DOIUrl":null,"url":null,"abstract":"Hydrogels have received much attention in the field of flexible electronics as materials with flexibility and multifunctionality. The mechanical strength of conventional hydrogels is usually difficult to meet the requirements of practical applications in electronic devices. How to fabricate a high-strength hydrogel should remain a challenge. Here, a strategy to enhance the mechanical properties of conductive hydrogels based on the Hofmeister effect is reported. The mechanical properties of hydrogels were enhanced by increasing the polymer chain density, enhancing the hydrophobicity and increasing the crystallinity, the high-strength and high-toughness polyvinyl alcohol/carbon nanotubes/polyethyleneimine (PVA/MWCNTs/PEI) conductive hydrogel was successfully produced. The ultimate stress of the hydrogel was as high as 3.5–6.3 MPa, the elongation at break was between 500 and 1200 %, and the toughness was up to 23.62 MJ/m. The conductivity of high-strength, high-toughness hydrogel is 0.05–0.45 S/m. Hydrogel was manufactured into a single-electrode friction nanogenerator (TENG), and it can easily light up to 100 LEDs. Therefore, this high-strength and high-toughness conductive hydrogel has great potential for TENG applications, offering the possibility of extending the working life of TENG in harsh environments.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"5 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102266","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels have received much attention in the field of flexible electronics as materials with flexibility and multifunctionality. The mechanical strength of conventional hydrogels is usually difficult to meet the requirements of practical applications in electronic devices. How to fabricate a high-strength hydrogel should remain a challenge. Here, a strategy to enhance the mechanical properties of conductive hydrogels based on the Hofmeister effect is reported. The mechanical properties of hydrogels were enhanced by increasing the polymer chain density, enhancing the hydrophobicity and increasing the crystallinity, the high-strength and high-toughness polyvinyl alcohol/carbon nanotubes/polyethyleneimine (PVA/MWCNTs/PEI) conductive hydrogel was successfully produced. The ultimate stress of the hydrogel was as high as 3.5–6.3 MPa, the elongation at break was between 500 and 1200 %, and the toughness was up to 23.62 MJ/m. The conductivity of high-strength, high-toughness hydrogel is 0.05–0.45 S/m. Hydrogel was manufactured into a single-electrode friction nanogenerator (TENG), and it can easily light up to 100 LEDs. Therefore, this high-strength and high-toughness conductive hydrogel has great potential for TENG applications, offering the possibility of extending the working life of TENG in harsh environments.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.