Misaligned Disk and Stellar Oblateness Driven Sculpting of Exoplanetary Systems: Origin of Perpendicular Orbits in HD 3167

Tao Fu, Yue Wang
{"title":"Misaligned Disk and Stellar Oblateness Driven Sculpting of Exoplanetary Systems: Origin of Perpendicular Orbits in HD 3167","authors":"Tao Fu, Yue Wang","doi":"arxiv-2409.00506","DOIUrl":null,"url":null,"abstract":"A significant proportion of exoplanets have been detected with highly tilted\nor even polar orbits relative to their host stars' equatorial planes. These\nunusual orbital configurations are often linked to post-disk secular\ninteractions among multiple bodies. However, many aspects remain elusive. In\nthis study, we investigate the role of disk-induced spin-orbit misalignments in\nshaping architecture of multi-planet systems, taking into account the combined\neffect of the host star's oblateness and the full-space disk potential. We\ndemonstrate that large mutual planetary inclinations can arise from a\nsaddle-center bifurcation occurring during the photoevaporation of the disk.\nThis bifurcation triggers an instant, non-adiabatic transition in the planet's\nlibration. Following this process, the orbital evolution diverges into several\ndistinct patterns. Notably, in scenarios involving a near-polar primordial\nmisalignment, the orbit, consistently librating about a coplanar equilibrium\naxis, can be captured by an orthogonal equilibrium during the decay of the\nstellar oblateness. However, the orbit will be eventually recaptured by the\ncoplanar equilibrium, aligned or anti-aligned with the orientation of the outer\norbit, resulting in either a prograde or retrograde inner-outer orbit\nconfiguration. Additionally, general relativity contributes to maintaining\neccentricity stability within these dynamic scenarios. Through the proposed\nmechanism, we can provide a plausible explanation for the unique,\nnear-perpendicular and likely retrograde orbit architecture observed in the HD\n3167 system, enhancing our understanding of exoplanetary system dynamics.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A significant proportion of exoplanets have been detected with highly tilted or even polar orbits relative to their host stars' equatorial planes. These unusual orbital configurations are often linked to post-disk secular interactions among multiple bodies. However, many aspects remain elusive. In this study, we investigate the role of disk-induced spin-orbit misalignments in shaping architecture of multi-planet systems, taking into account the combined effect of the host star's oblateness and the full-space disk potential. We demonstrate that large mutual planetary inclinations can arise from a saddle-center bifurcation occurring during the photoevaporation of the disk. This bifurcation triggers an instant, non-adiabatic transition in the planet's libration. Following this process, the orbital evolution diverges into several distinct patterns. Notably, in scenarios involving a near-polar primordial misalignment, the orbit, consistently librating about a coplanar equilibrium axis, can be captured by an orthogonal equilibrium during the decay of the stellar oblateness. However, the orbit will be eventually recaptured by the coplanar equilibrium, aligned or anti-aligned with the orientation of the outer orbit, resulting in either a prograde or retrograde inner-outer orbit configuration. Additionally, general relativity contributes to maintaining eccentricity stability within these dynamic scenarios. Through the proposed mechanism, we can provide a plausible explanation for the unique, near-perpendicular and likely retrograde orbit architecture observed in the HD 3167 system, enhancing our understanding of exoplanetary system dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盘错位和恒星扁平驱动的系外行星系统雕刻:HD 3167中垂直轨道的起源
已经探测到相当一部分系外行星的轨道相对于其宿主恒星的赤道平面高度倾斜,甚至是极地轨道。这些不寻常的轨道构造往往与多个天体之间的盘后世俗相互作用有关。然而,许多方面仍然难以捉摸。在这项研究中,我们考虑到主星的扁平性和全空间盘势的共同作用,研究了盘引起的自旋轨道错位在塑造多行星系统结构中的作用。我们证明,大的行星相互倾角可能源于盘的光蒸发过程中发生的平行中心分岔。在这一过程之后,轨道演化分化成几种不同的模式。值得注意的是,在涉及近极性原初对齐的情况下,轨道始终围绕共面平衡轴摆动,在恒星扁平度衰减期间可以被正交平衡所捕获。不过,轨道最终会被共面平衡重新捕获,与外轨道的方向对齐或反对齐,从而形成顺行或逆行的内-外轨道配置。此外,广义相对论还有助于在这些动态情景中维持同心度稳定性。通过所提出的机制,我们可以为在HD3167系统中观测到的独特、近乎垂直和可能逆行的轨道结构提供一个合理的解释,从而加深我们对外行星系统动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Possible Causes of the Transit Timing Variation for TrES-2b in TESS Era Drifts of the sub-stellar points of the TRAPPIST-1 planets Updated forecast for TRAPPIST-1 times of transit for all seven exoplanets incorporating JWST data Thermal Evolution of Lava Planets Quartz Clouds in the Dayside Atmosphere of the Quintessential Hot Jupiter HD 189733 b
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1