Drifts of the sub-stellar points of the TRAPPIST-1 planets

Revol Alexandre, Émeline Bolmont, Mariana Sastre, Gabriel Tobie, Anne-Sophie Libert, Mathilde Kervazo, Sergi Blanco-Cuaresma
{"title":"Drifts of the sub-stellar points of the TRAPPIST-1 planets","authors":"Revol Alexandre, Émeline Bolmont, Mariana Sastre, Gabriel Tobie, Anne-Sophie Libert, Mathilde Kervazo, Sergi Blanco-Cuaresma","doi":"arxiv-2409.12065","DOIUrl":null,"url":null,"abstract":"Accurate modeling of tidal interactions is crucial for interpreting recent\nJWST observations of the thermal emissions of TRAPPIST-1~b and c and for\ncharacterizing the surface conditions and potential habitability of the other\nplanets in the system. Indeed, the rotation state of the planets, driven by\ntidal forces, significantly influences the heat redistribution regime. Due to\ntheir proximity to their host star and the estimated age of the system, the\nTRAPPIST-1 planets are commonly assumed to be in a synchronization state. In\nthis work, we present the recent implementation of the co-planar tidal torque\nand forces equations within the formalism of Kaula in the N-body code\nPosidonius. This enables us to explore the hypothesis of synchronization using\na tidal model well suited to rocky planets. We studied the rotational state of\neach planet by taking into account their multi-layer internal structure\ncomputed with the code Burnman. Simulations show that the TRAPPIST-1 planets\nare not perfectly synchronized but oscillate around the synchronization state.\nPlanet-planet interactions lead to strong variations on the mean motion and\ntides fail to keep the spin synchronized with respect to the mean motion. As a\nresult, the sub-stellar point of each planet experiences short oscillations and\nlong-timescale drifts that lead the planets to achieve a synodic day with\nperiods varying from $55$~years to $290$~years depending on the planet.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate modeling of tidal interactions is crucial for interpreting recent JWST observations of the thermal emissions of TRAPPIST-1~b and c and for characterizing the surface conditions and potential habitability of the other planets in the system. Indeed, the rotation state of the planets, driven by tidal forces, significantly influences the heat redistribution regime. Due to their proximity to their host star and the estimated age of the system, the TRAPPIST-1 planets are commonly assumed to be in a synchronization state. In this work, we present the recent implementation of the co-planar tidal torque and forces equations within the formalism of Kaula in the N-body code Posidonius. This enables us to explore the hypothesis of synchronization using a tidal model well suited to rocky planets. We studied the rotational state of each planet by taking into account their multi-layer internal structure computed with the code Burnman. Simulations show that the TRAPPIST-1 planets are not perfectly synchronized but oscillate around the synchronization state. Planet-planet interactions lead to strong variations on the mean motion and tides fail to keep the spin synchronized with respect to the mean motion. As a result, the sub-stellar point of each planet experiences short oscillations and long-timescale drifts that lead the planets to achieve a synodic day with periods varying from $55$~years to $290$~years depending on the planet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TRAPPIST-1 行星的亚恒星点漂移
潮汐相互作用的精确建模对于解释 JWST 最近观测到的 TRAPPIST-1~b 和 c 的热辐射以及描述该系统中其他行星的表面状况和潜在的可居住性至关重要。事实上,在潮汐力的驱动下,行星的自转状态极大地影响了热量的再分配机制。由于TRAPPIST-1行星与主恒星的距离很近,而且该系统的估计年龄较大,因此通常假定它们处于同步状态。在这项工作中,我们介绍了最近在N-body代码Posidonius中实现Kaula形式主义中的共面潮汐力矩和力方程的情况。这使我们能够利用一个非常适合岩质行星的潮汐模型来探索同步假说。我们在研究每颗行星的旋转状态时,都考虑到了用 Burnman 代码计算的多层内部结构。模拟结果表明,TRAPPIST-1行星并不是完全同步的,而是在同步状态附近摆动。行星与行星之间的相互作用导致平均运动发生强烈变化,潮汐也无法使自旋与平均运动保持同步。因此,每颗行星的亚恒星点都经历了短时间的振荡和长时间的漂移,导致行星实现了周期从 55 美元~年到 290 美元~年不等的同步日,具体取决于行星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Possible Causes of the Transit Timing Variation for TrES-2b in TESS Era Drifts of the sub-stellar points of the TRAPPIST-1 planets Updated forecast for TRAPPIST-1 times of transit for all seven exoplanets incorporating JWST data Thermal Evolution of Lava Planets Quartz Clouds in the Dayside Atmosphere of the Quintessential Hot Jupiter HD 189733 b
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1