Zeyad Ghaleb Al-Mekhlafi, Hussam Dheaa Kamel Al-Janabi, Mahmood A. Al-Shareeda, Badiea Abdulkarem Mohammed, Jalawi Sulaiman Alshudukhi, Kawther A. Al-Dhlan
{"title":"Fog computing and blockchain technology based certificateless authentication scheme in 5G-assisted vehicular communication","authors":"Zeyad Ghaleb Al-Mekhlafi, Hussam Dheaa Kamel Al-Janabi, Mahmood A. Al-Shareeda, Badiea Abdulkarem Mohammed, Jalawi Sulaiman Alshudukhi, Kawther A. Al-Dhlan","doi":"10.1007/s12083-024-01778-9","DOIUrl":null,"url":null,"abstract":"<p>With the goal of enhancing traffic flow and decreasing road accidents, fifth-generation (5G)-assisted vehicular fog computing was developed through innovative studies in wireless network connection technologies. But, with such high speeds and open wireless networks built into the system, privacy and security are major issues. To ensure the safety of vehicular fog computing with 5G assistance, it is essential to verify vehicle-to-vehicle traffic communication. Numerous conditional privacy-preserving authentications (CPPA) solutions have been created to safeguard communications connected to traffic in systems. Nevertheless, utilising these CPPA approaches to validate signatures is computationally costly. Elliptic curve cryptography provides authentication and conditional privacy in this certificateless authentication method for 5G-assisted vehicular fog computing, which streamlines the process of verifying vehicle signatures. In contrast, the certificateless CPPA method rapidly authenticates a signature using blockchain technology, eliminating the need for any prior identification or validation of its legitimacy. According to our experiment carried out the AVISPA tool, there are no vulnerabilities in the system that could be exploited by a Doley-Yao threat. In comparison to older approaches, the proposed solution significantly reduces the computational, communication, and energy consumption expenses.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"19 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01778-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the goal of enhancing traffic flow and decreasing road accidents, fifth-generation (5G)-assisted vehicular fog computing was developed through innovative studies in wireless network connection technologies. But, with such high speeds and open wireless networks built into the system, privacy and security are major issues. To ensure the safety of vehicular fog computing with 5G assistance, it is essential to verify vehicle-to-vehicle traffic communication. Numerous conditional privacy-preserving authentications (CPPA) solutions have been created to safeguard communications connected to traffic in systems. Nevertheless, utilising these CPPA approaches to validate signatures is computationally costly. Elliptic curve cryptography provides authentication and conditional privacy in this certificateless authentication method for 5G-assisted vehicular fog computing, which streamlines the process of verifying vehicle signatures. In contrast, the certificateless CPPA method rapidly authenticates a signature using blockchain technology, eliminating the need for any prior identification or validation of its legitimacy. According to our experiment carried out the AVISPA tool, there are no vulnerabilities in the system that could be exploited by a Doley-Yao threat. In comparison to older approaches, the proposed solution significantly reduces the computational, communication, and energy consumption expenses.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.