Theoretical insights into Pt–Rh alloy nanoparticles: stability, elemental distribution, and catalytic mechanisms for NO + CO reactions

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-09-09 DOI:10.1039/d4cy00755g
Yuzheng Li, Xianbao Duan, Zhang Liu, Caoran Li, Fangwen Ye, Zhihong Zhang, Liuqing Chen, Chun Du, Qingbo Wang, Bin Shan
{"title":"Theoretical insights into Pt–Rh alloy nanoparticles: stability, elemental distribution, and catalytic mechanisms for NO + CO reactions","authors":"Yuzheng Li, Xianbao Duan, Zhang Liu, Caoran Li, Fangwen Ye, Zhihong Zhang, Liuqing Chen, Chun Du, Qingbo Wang, Bin Shan","doi":"10.1039/d4cy00755g","DOIUrl":null,"url":null,"abstract":"Pt–Rh bimetallic alloys hold significant promise in catalysis. This study theoretically delves into the stable configurations and elemental distributions of Pt–Rh alloy nanoparticles (NPs) and their influence on the NO + CO catalytic reaction. Initially, a comprehensive dataset for the Pt–Rh system is compiled <em>via</em> calculations based on density functional theory (DFT), followed by developing machine learning potential with accuracy akin to DFT. By employing hybrid Monte Carlo/molecular dynamics simulations, the study unveils that the octahedron-shaped NP is the most stable. Elemental distribution analysis highlights the prevalence of Rh atoms within the interior, particularly in the sub-surface layer, with Pt atoms predominantly occupying the top-surface layer. Building upon these insights, four surface models are crafted and their catalytic efficacy in the NO + CO reaction is evaluated <em>via</em> DFT calculations. The findings indicate that Pt atoms at the top-surface foster N<small><sub>2</sub></small> recombination, Rh atoms facilitate NO dissociation, while Rh atoms in the sub-surface layer modestly enhance both processes. Hence, Pt–Rh alloy NPs featuring surfaces with both Pt and Rh atoms, with a dominance of Rh atoms in the sub-surface layer, are poised to demonstrate bifunctional catalytic prowess in the NO + CO reaction. This study offers crucial guidance for designing bifunctional catalysts for exhaust gas treatment.","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cy00755g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pt–Rh bimetallic alloys hold significant promise in catalysis. This study theoretically delves into the stable configurations and elemental distributions of Pt–Rh alloy nanoparticles (NPs) and their influence on the NO + CO catalytic reaction. Initially, a comprehensive dataset for the Pt–Rh system is compiled via calculations based on density functional theory (DFT), followed by developing machine learning potential with accuracy akin to DFT. By employing hybrid Monte Carlo/molecular dynamics simulations, the study unveils that the octahedron-shaped NP is the most stable. Elemental distribution analysis highlights the prevalence of Rh atoms within the interior, particularly in the sub-surface layer, with Pt atoms predominantly occupying the top-surface layer. Building upon these insights, four surface models are crafted and their catalytic efficacy in the NO + CO reaction is evaluated via DFT calculations. The findings indicate that Pt atoms at the top-surface foster N2 recombination, Rh atoms facilitate NO dissociation, while Rh atoms in the sub-surface layer modestly enhance both processes. Hence, Pt–Rh alloy NPs featuring surfaces with both Pt and Rh atoms, with a dominance of Rh atoms in the sub-surface layer, are poised to demonstrate bifunctional catalytic prowess in the NO + CO reaction. This study offers crucial guidance for designing bifunctional catalysts for exhaust gas treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铂铑合金纳米颗粒的理论见解:稳定性、元素分布以及 NO + CO 反应的催化机理
铂铑双金属合金在催化领域大有可为。本研究从理论上深入研究了铂铑合金纳米粒子(NPs)的稳定构型和元素分布及其对 NO + CO 催化反应的影响。首先,通过基于密度泛函理论(DFT)的计算,为 Pt-Rh 系统编制了一个全面的数据集,然后开发了具有类似 DFT 精确度的机器学习潜力。通过采用蒙特卡罗/分子动力学混合模拟,研究揭示了八面体形状的 NP 是最稳定的。元素分布分析凸显了 Rh 原子在内部的普遍存在,尤其是在次表层,而 Pt 原子则主要占据表层顶端。基于这些见解,我们制作了四种表面模型,并通过 DFT 计算评估了它们在 NO + CO 反应中的催化功效。研究结果表明,位于顶表层的铂原子促进了 N2 的重组,Rh 原子促进了 NO 的解离,而位于次表层的 Rh 原子则适度地增强了这两个过程。因此,表面同时含有 Pt 原子和 Rh 原子的 Pt-Rh 合金 NPs(Rh 原子主要位于次表层)有望在 NO + CO 反应中发挥双功能催化作用。这项研究为设计用于废气处理的双功能催化剂提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Single-step in situ synthesis of bimetallic catalysts via a gas-phase route: the case of PdZn–ZnO The effect of polyunsaturation – insights into the hydroformylation of oleochemicals Exploring the impact of abnormal coordination in macrocyclic N-heterocyclic carbene ligands on bio-inspired iron epoxidation catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1