Congzhou M. Sha, Jian Wang, Richard B. Mailman, Yang Yang, Nikolay V. Dokholyan
{"title":"Quantifying network behavior in the rat prefrontal cortex","authors":"Congzhou M. Sha, Jian Wang, Richard B. Mailman, Yang Yang, Nikolay V. Dokholyan","doi":"10.3389/fncom.2024.1293279","DOIUrl":null,"url":null,"abstract":"The question of how consciousness and behavior arise from neural activity is fundamental to understanding the brain, and to improving the diagnosis and treatment of neurological and psychiatric disorders. There is significant murine and primate literature on how behavior is related to the electrophysiological activity of the medial prefrontal cortex and its role in working memory processes such as planning and decision-making. Existing experimental designs, specifically the rodent spike train and local field potential recordings during the T-maze alternation task, have insufficient statistical power to unravel the complex processes of the prefrontal cortex. We therefore examined the theoretical limitations of such experiments, providing concrete guidelines for robust and reproducible science. To approach these theoretical limits, we applied dynamic time warping and associated statistical tests to data from neuron spike trains and local field potentials. The goal was to quantify neural network synchronicity and the correlation of neuroelectrophysiology with rat behavior. The results show the statistical limitations of existing data, and the fact that making meaningful comparison between dynamic time warping with traditional Fourier and wavelet analysis is impossible until larger and cleaner datasets are available.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1293279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The question of how consciousness and behavior arise from neural activity is fundamental to understanding the brain, and to improving the diagnosis and treatment of neurological and psychiatric disorders. There is significant murine and primate literature on how behavior is related to the electrophysiological activity of the medial prefrontal cortex and its role in working memory processes such as planning and decision-making. Existing experimental designs, specifically the rodent spike train and local field potential recordings during the T-maze alternation task, have insufficient statistical power to unravel the complex processes of the prefrontal cortex. We therefore examined the theoretical limitations of such experiments, providing concrete guidelines for robust and reproducible science. To approach these theoretical limits, we applied dynamic time warping and associated statistical tests to data from neuron spike trains and local field potentials. The goal was to quantify neural network synchronicity and the correlation of neuroelectrophysiology with rat behavior. The results show the statistical limitations of existing data, and the fact that making meaningful comparison between dynamic time warping with traditional Fourier and wavelet analysis is impossible until larger and cleaner datasets are available.
意识和行为是如何从神经活动中产生的,这个问题对于理解大脑、改善神经和精神疾病的诊断和治疗至关重要。关于行为如何与内侧前额叶皮层的电生理活动及其在计划和决策等工作记忆过程中的作用相关,已有大量关于小鼠和灵长类动物的文献。现有的实验设计,特别是啮齿类动物在 T 迷宫交替任务中的尖峰序列和局部场电位记录,没有足够的统计能力来揭示前额叶皮层的复杂过程。因此,我们研究了此类实验的理论限制,为稳健、可重复的科学研究提供了具体指导。为了接近这些理论限制,我们对神经元尖峰列车和局部场电位数据进行了动态时间扭曲和相关统计检验。目的是量化神经网络的同步性以及神经电生理学与大鼠行为的相关性。结果表明了现有数据在统计方面的局限性,以及在获得更大、更清晰的数据集之前,不可能将动态时间扭曲与传统的傅里叶和小波分析进行有意义的比较。
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro