F. Esmati, M. C. Holliday, S. H. Zein, K. J. Jabbar, S. H. Tan, A. Putranto
{"title":"Enhancing hexavalent chromium removal from textile effluent with low-cost adsorbent: simulation and a techno-economic study","authors":"F. Esmati, M. C. Holliday, S. H. Zein, K. J. Jabbar, S. H. Tan, A. Putranto","doi":"10.1007/s13762-024-05958-1","DOIUrl":null,"url":null,"abstract":"<p>This paper simulated hexavalent chromium (Cr(VI)) adsorption using cocoa pod husk biosorbent in a fixed bed column using Aspen Adsorption. This study was designed to show the effectiveness of computational methods in designing, optimising and evaluating the scaled-up adsorption process using low-cost adsorbents. To the best of our knowledge, the economic analysis of Cr(VI) removal using biosorbent adsorption columns with the assistance of Aspen Adsorption and response-surface methodology (RSM) has not been performed previously. Design Expert and RSM were used to optimise and describe the effect of flow rate and initial concentration on breakthrough and saturation times. The breakthrough time was improved by a higher bed height (2.0 m), a wider diameter (2.0 m), and lowering the flow rate (0.010 L/s). The initial concentration had no effect (1.00 mol/L). The predicted breakthrough and saturation time were 29,360 s and 313,351 s, respectively. Two scenarios were economically compared over 20 years. Scenario 1 (1-day breakthrough time) costs $746,585 and Scenario 2 (4-week breakthrough time) costs $1,538,319. This is because Scenario 2 used a taller, wider column which required a greater amount of adsorbent, and 387,873 m<sup>3</sup> of water were processed, respectively. Processed water was dependent on the flow rate and breakthrough time. It was concluded that cocoa pod husk could be an efficient adsorbent and the adsorption process can be successfully simulated and optimised. The use of alternative low-cost adsorbents should be encouraged. The economic study showed that simulation and RSM data could successfully be used for economic analysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13762-024-05958-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper simulated hexavalent chromium (Cr(VI)) adsorption using cocoa pod husk biosorbent in a fixed bed column using Aspen Adsorption. This study was designed to show the effectiveness of computational methods in designing, optimising and evaluating the scaled-up adsorption process using low-cost adsorbents. To the best of our knowledge, the economic analysis of Cr(VI) removal using biosorbent adsorption columns with the assistance of Aspen Adsorption and response-surface methodology (RSM) has not been performed previously. Design Expert and RSM were used to optimise and describe the effect of flow rate and initial concentration on breakthrough and saturation times. The breakthrough time was improved by a higher bed height (2.0 m), a wider diameter (2.0 m), and lowering the flow rate (0.010 L/s). The initial concentration had no effect (1.00 mol/L). The predicted breakthrough and saturation time were 29,360 s and 313,351 s, respectively. Two scenarios were economically compared over 20 years. Scenario 1 (1-day breakthrough time) costs $746,585 and Scenario 2 (4-week breakthrough time) costs $1,538,319. This is because Scenario 2 used a taller, wider column which required a greater amount of adsorbent, and 387,873 m3 of water were processed, respectively. Processed water was dependent on the flow rate and breakthrough time. It was concluded that cocoa pod husk could be an efficient adsorbent and the adsorption process can be successfully simulated and optimised. The use of alternative low-cost adsorbents should be encouraged. The economic study showed that simulation and RSM data could successfully be used for economic analysis.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.