{"title":"An EM‐based likelihood inference for degradation data analysis using gamma process","authors":"Lochana Palayangoda, N. Balakrishnan","doi":"10.1002/asmb.2886","DOIUrl":null,"url":null,"abstract":"The gamma process is widely used for the lifetime estimation of highly reliable products that degrade over time. Typically, incomplete likelihood is used to estimate the model parameters and the reliability estimates for the first passage time distribution of the gamma process; however, it (i.e., pseudo method) does not consider interval censoring and right censoring information of the degradation data. In this work, the expectation‐maximization algorithm‐based method (EM method) is developed for the estimation of the gamma process model parameters and the reliability estimates incorporating interval censoring and right censoring. The asymptotic variance–covariance matrix and the asymptotic confidence intervals for the parameters are constructed, and then a comparison between the pseudo method and the EM method is made. Monte Carlo simulation studies and real‐life data applications are conducted in order to illustrate the performance of the proposed EM method over the pseudo method.","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/asmb.2886","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The gamma process is widely used for the lifetime estimation of highly reliable products that degrade over time. Typically, incomplete likelihood is used to estimate the model parameters and the reliability estimates for the first passage time distribution of the gamma process; however, it (i.e., pseudo method) does not consider interval censoring and right censoring information of the degradation data. In this work, the expectation‐maximization algorithm‐based method (EM method) is developed for the estimation of the gamma process model parameters and the reliability estimates incorporating interval censoring and right censoring. The asymptotic variance–covariance matrix and the asymptotic confidence intervals for the parameters are constructed, and then a comparison between the pseudo method and the EM method is made. Monte Carlo simulation studies and real‐life data applications are conducted in order to illustrate the performance of the proposed EM method over the pseudo method.
伽马过程被广泛用于随时间退化的高可靠性产品的寿命估计。通常情况下,不完全似然法用于估计伽马过程第一次通过时间分布的模型参数和可靠性估计值;但是,这种方法(即伪方法)没有考虑降解数据的区间剔除和右剔除信息。本研究开发了基于期望最大化算法的方法(EM 方法),用于估计伽马过程模型参数以及包含区间普查和右侧普查的可靠性估计值。构建了参数的渐近方差-协方差矩阵和渐近置信区间,并对伪方法和 EM 方法进行了比较。通过蒙特卡罗模拟研究和实际数据应用,说明了所提出的 EM 方法相对于伪方法的性能。
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.