Yifan Zhou, Rowan Ranson, Michalis Panagiotou, Chris Overstreet
{"title":"Ytterbium atom interferometry for dark matter searches","authors":"Yifan Zhou, Rowan Ranson, Michalis Panagiotou, Chris Overstreet","doi":"10.1103/physreva.110.033313","DOIUrl":null,"url":null,"abstract":"We analyze the projected sensitivity of a laboratory-scale ytterbium atom interferometer to scalar, vector, and pseudoscalar dark matter signals. A frequency ratio measurement between two transitions in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Yb</mi><mprescripts></mprescripts><none></none><mn>171</mn></mmultiscripts></math> enables a search for variations of the fine-structure constant that could surpass existing limits by a factor of 100 in the mass range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>22</mn></mrow></msup></math>–<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></math> eV. Differential accelerometry between ytterbium isotopes yields projected sensitivities to scalar and vector dark matter couplings that are stronger than the limits set by the MICROSCOPE equivalence principle test, and an analogous measurement in the MAGIS-100 long-baseline interferometer would be more sensitive than previous bounds by factors of 10 or more. A search for anomalous spin torque in MAGIS-100 is projected to reach similar sensitivity to atomic magnetometry experiments. We discuss strategies for mitigating the main systematic effects in each measurement. These results indicate that improved dark matter searches with ytterbium atom interferometry are technically feasible.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"99 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033313","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the projected sensitivity of a laboratory-scale ytterbium atom interferometer to scalar, vector, and pseudoscalar dark matter signals. A frequency ratio measurement between two transitions in enables a search for variations of the fine-structure constant that could surpass existing limits by a factor of 100 in the mass range – eV. Differential accelerometry between ytterbium isotopes yields projected sensitivities to scalar and vector dark matter couplings that are stronger than the limits set by the MICROSCOPE equivalence principle test, and an analogous measurement in the MAGIS-100 long-baseline interferometer would be more sensitive than previous bounds by factors of 10 or more. A search for anomalous spin torque in MAGIS-100 is projected to reach similar sensitivity to atomic magnetometry experiments. We discuss strategies for mitigating the main systematic effects in each measurement. These results indicate that improved dark matter searches with ytterbium atom interferometry are technically feasible.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics