{"title":"Limitations in fluorescence-detected entangled two-photon-absorption experiments: Exploring the low- to high-gain squeezing regimes","authors":"Tiemo Landes, Brian J. Smith, Michael G. Raymer","doi":"10.1103/physreva.110.033708","DOIUrl":null,"url":null,"abstract":"We closely replicated and extended a recent experiment [<span>Phys. Rev. Lett.</span> <b>129</b>, 183601 (2022)] that reportedly observed enhancement of two-photon-absorption rates in molecular samples by using time-frequency-entangled photon pairs, and we found that in the low-flux regime, where such enhancement is theoretically predicted in principle, the two-photon fluorescence signal is below the detection threshold using current state-of-the-art methods. The results are important in the context of efforts to enable quantum-enhanced molecular spectroscopy and imaging at ultra-low optical flux. Using an optical parametric down-conversion photon-pair source that can be varied from the low-gain spontaneous regime to the high-gain squeezing regime, we observed two-photon-induced fluorescence in the high-gain regime, but in the low-gain regime any fluorescence was below detection threshold. We supplemented the molecular fluorescence experiments with a study of nonlinear-optical sum-frequency generation, for which we are able to observe the low-to-high-gain crossover, thereby verifying our theoretical models and experimental techniques. The observed rates (or lack thereof) in both experiments are consistent with theoretical predictions and with our previous experiments, and indicate that time-frequency photon entanglement does not provide a practical means to enhance in-solution molecular two-photon fluorescence spectroscopy or imaging with current techniques.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033708","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We closely replicated and extended a recent experiment [Phys. Rev. Lett.129, 183601 (2022)] that reportedly observed enhancement of two-photon-absorption rates in molecular samples by using time-frequency-entangled photon pairs, and we found that in the low-flux regime, where such enhancement is theoretically predicted in principle, the two-photon fluorescence signal is below the detection threshold using current state-of-the-art methods. The results are important in the context of efforts to enable quantum-enhanced molecular spectroscopy and imaging at ultra-low optical flux. Using an optical parametric down-conversion photon-pair source that can be varied from the low-gain spontaneous regime to the high-gain squeezing regime, we observed two-photon-induced fluorescence in the high-gain regime, but in the low-gain regime any fluorescence was below detection threshold. We supplemented the molecular fluorescence experiments with a study of nonlinear-optical sum-frequency generation, for which we are able to observe the low-to-high-gain crossover, thereby verifying our theoretical models and experimental techniques. The observed rates (or lack thereof) in both experiments are consistent with theoretical predictions and with our previous experiments, and indicate that time-frequency photon entanglement does not provide a practical means to enhance in-solution molecular two-photon fluorescence spectroscopy or imaging with current techniques.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics