{"title":"Improving on-demand single-photon-source coherence and indistinguishability through a time-delayed coherent feedback","authors":"Gavin Crowder, Lora Ramunno, Stephen Hughes","doi":"10.1103/physreva.110.l031703","DOIUrl":null,"url":null,"abstract":"Single-photon sources (SPSs) are an essential resource for many quantum information technologies. We demonstrate how the inclusion of time-delayed coherent feedback in a scalable waveguide system can significantly improve the two key SPS figures of merit: coherence and indistinguishability. Our feedback protocol is simulated using a quantum trajectory discretized waveguide model which can be used to directly model Hanbury Brown and Twiss (HBT) and Hong-Ou-Mandel (HOM) interferometers. With the proper choice of the round trip phase, the non-Markovian dynamics from the time-delayed feedback improves the indistinguishability of the SPS by up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>57</mn><mo>%</mo></mrow></math>. We also show how this mechanism suppresses the detrimental effects of off-chip decay and pure dephasing.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.l031703","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Single-photon sources (SPSs) are an essential resource for many quantum information technologies. We demonstrate how the inclusion of time-delayed coherent feedback in a scalable waveguide system can significantly improve the two key SPS figures of merit: coherence and indistinguishability. Our feedback protocol is simulated using a quantum trajectory discretized waveguide model which can be used to directly model Hanbury Brown and Twiss (HBT) and Hong-Ou-Mandel (HOM) interferometers. With the proper choice of the round trip phase, the non-Markovian dynamics from the time-delayed feedback improves the indistinguishability of the SPS by up to . We also show how this mechanism suppresses the detrimental effects of off-chip decay and pure dephasing.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics