Coherent collisional decoherence

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy Physical Review A Pub Date : 2024-09-10 DOI:10.1103/physreva.110.033311
Leonardo Badurina, Clara Murgui, Ryan Plestid
{"title":"Coherent collisional decoherence","authors":"Leonardo Badurina, Clara Murgui, Ryan Plestid","doi":"10.1103/physreva.110.033311","DOIUrl":null,"url":null,"abstract":"We study the decoherence of a system of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> noninteracting heavy particles (atoms) due to coherent scattering with a background gas. We introduce a framework for computing the induced phase shift and loss of contrast for arbitrary preparations of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>-particle quantum states. We find phase shifts that are inherently <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math>-body effects and may be searched for in future experiments. We analyze simple setups, including a two-mode approximation of an interferometer. We study fully entangled <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mn>00</mn><mi>N</mi></mrow></math> states, which resemble the correlated positions in a matter interferometer, as well as totally uncorrelated product states that are representative of a typical state in an atom interferometer. We find that the extent to which coherent enhancements increase the rate of decoherence depends on the observable of interest, state preparation, and details of the experimental design. In the context of future ultralow-recoil (e.g., light dark matter) searches with atom interferometers we conclude that (i) there exists a coherently enhanced scattering phase which can be searched for using standard (i.e., contrast/visibility and phase) interferometer observables; (ii) although decoherence rates of one-body observables are <i>not</i> coherently enhanced, a coherently enhanced loss of contrast can still arise from dephasing; and (iii) higher statistical moments (which are immediately accessible in a counting experiment) <i>are</i> coherently enhanced and may offer a new tool with which to probe the soft scattering of otherwise undetectable particles in the laboratory.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033311","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study the decoherence of a system of N noninteracting heavy particles (atoms) due to coherent scattering with a background gas. We introduce a framework for computing the induced phase shift and loss of contrast for arbitrary preparations of N-particle quantum states. We find phase shifts that are inherently (N2)-body effects and may be searched for in future experiments. We analyze simple setups, including a two-mode approximation of an interferometer. We study fully entangled N00N states, which resemble the correlated positions in a matter interferometer, as well as totally uncorrelated product states that are representative of a typical state in an atom interferometer. We find that the extent to which coherent enhancements increase the rate of decoherence depends on the observable of interest, state preparation, and details of the experimental design. In the context of future ultralow-recoil (e.g., light dark matter) searches with atom interferometers we conclude that (i) there exists a coherently enhanced scattering phase which can be searched for using standard (i.e., contrast/visibility and phase) interferometer observables; (ii) although decoherence rates of one-body observables are not coherently enhanced, a coherently enhanced loss of contrast can still arise from dephasing; and (iii) higher statistical moments (which are immediately accessible in a counting experiment) are coherently enhanced and may offer a new tool with which to probe the soft scattering of otherwise undetectable particles in the laboratory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相干碰撞退相干
我们研究了 N 个非相互作用重粒子(原子)系统与背景气体相干散射引起的退相干现象。我们引入了一个框架,用于计算任意制备的 N 粒子量子态的诱导相移和对比度损失。我们发现相移本质上是(N≥2)体效应,可以在未来的实验中寻找。我们分析了简单的设置,包括干涉仪的双模近似。我们研究了完全纠缠的 N00N 状态(类似于物质干涉仪中的相关位置),以及完全不相关的乘积状态(代表原子干涉仪中的典型状态)。我们发现,相干增强能在多大程度上提高退相干率取决于感兴趣的观测指标、状态准备以及实验设计的细节。在未来利用原子干涉仪进行超低反响(如轻暗物质)搜索的背景下,我们得出以下结论:(i) 存在一个相干增强的散射相位,可以利用标准(即对比度/可见度和相位)进行搜索、(ii)虽然单体观测值的退相干率没有得到相干增强,但相干增强的对比度损失仍可能来自去相干;以及(iii)更高的统计矩(在计数实验中可以立即获得)得到了相干增强,这可能为探测实验室中原本无法探测到的粒子的软散射提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
期刊最新文献
Relativistic and recoil corrections to vacuum polarization in muonic systems: Three-photon exchange, gauge invariance, and numerical values Combined microwave and optical spectroscopy for hyperfine structure analysis in thulium atoms Spectral evidence of vibronic Rabi oscillations in the resonance-enhanced photodissociation of MgH+ Universality and two-body losses: Lessons from the effective non-Hermitian dynamics of two particles Reliable quantum memories with unreliable components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1