Tc and resistivity variation induced by external bending strain in flexible film of strain-sensitive (La,Sr)2CuO4

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-09-12 DOI:10.1103/physrevmaterials.8.094802
Tomoya Horide, Tomoaki Maekawa, Tatsuro Aikawa, Takanori Kitamura, Kazuma Nakamura
{"title":"Tc and resistivity variation induced by external bending strain in flexible film of strain-sensitive (La,Sr)2CuO4","authors":"Tomoya Horide, Tomoaki Maekawa, Tatsuro Aikawa, Takanori Kitamura, Kazuma Nakamura","doi":"10.1103/physrevmaterials.8.094802","DOIUrl":null,"url":null,"abstract":"Strain in materials changes their electronic structure, and the strain response realizes rich material properties and devices. Superconductivity under hydrostatic pressure and epitaxial strain suggests significant response to an external variable strain in a single sample, but this has not yet been demonstrated because the strain is usually a fixed parameter after sample fabrication. <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mo>(</mo><mrow><mi>La</mi><mo>,</mo><mi>Sr</mi></mrow><mo>)</mo></mrow><mn>2</mn></msub><mi>Cu</mi><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math> films were fabricated on flexible metal substrates, and bending strain was applied to them to observe the critical temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>(</mo><msub><mi>T</mi><mi mathvariant=\"normal\">c</mi></msub><mo>)</mo></mrow></math> and resistivity variation induced by strain. The compressive bending strain of −0.005 increased the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi mathvariant=\"normal\">c</mi></msub></math> from 23.4 to 27.3 K. The magnitude of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi mathvariant=\"normal\">c</mi></msub></math> change by the bending strain is independent of the doping level and initial epitaxial strain. Furthermore, the irreversibility temperature was also improved by the compressive bending, and reasonable <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi mathvariant=\"normal\">c</mi></msub></math> variation with respect to the reversible strain was observed. <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>A</mi></mrow></math><i>b initio</i> density functional calculation for the mother compound <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">L</mi><msub><mi mathvariant=\"normal\">a</mi><mn>2</mn></msub><mi>Cu</mi><msub><mi mathvariant=\"normal\">O</mi><mn>4</mn></msub></mrow></math> clarified that the low-energy electronic structures are sensitive to the bending strain. While the carriers (holes) are preferentially injected into the in-plane orbitals of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cu</mi><msub><mi mathvariant=\"normal\">O</mi><mn>2</mn></msub></mrow></math> plane under the compressive strain, the tensile strain leads to the carrier injection into the perpendicular orbitals which is unfavorable to the superconductivity. The strain-sensitive high-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi mathvariant=\"normal\">c</mi></msub></math> superconductor under the external strain highlights a new aspect for cuprate superconductors, which opens monitoring of the stress situation in the cryogenic systems such as superconducting magnet and liquid hydrogen container.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"16 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094802","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strain in materials changes their electronic structure, and the strain response realizes rich material properties and devices. Superconductivity under hydrostatic pressure and epitaxial strain suggests significant response to an external variable strain in a single sample, but this has not yet been demonstrated because the strain is usually a fixed parameter after sample fabrication. (La,Sr)2CuO4 films were fabricated on flexible metal substrates, and bending strain was applied to them to observe the critical temperature (Tc) and resistivity variation induced by strain. The compressive bending strain of −0.005 increased the Tc from 23.4 to 27.3 K. The magnitude of the Tc change by the bending strain is independent of the doping level and initial epitaxial strain. Furthermore, the irreversibility temperature was also improved by the compressive bending, and reasonable Tc variation with respect to the reversible strain was observed. Ab initio density functional calculation for the mother compound La2CuO4 clarified that the low-energy electronic structures are sensitive to the bending strain. While the carriers (holes) are preferentially injected into the in-plane orbitals of the CuO2 plane under the compressive strain, the tensile strain leads to the carrier injection into the perpendicular orbitals which is unfavorable to the superconductivity. The strain-sensitive high-Tc superconductor under the external strain highlights a new aspect for cuprate superconductors, which opens monitoring of the stress situation in the cryogenic systems such as superconducting magnet and liquid hydrogen container.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变敏感(La,Sr)2CuO4柔性薄膜中外部弯曲应变诱发的热导系数和电阻率变化
材料中的应变会改变其电子结构,应变响应会实现丰富的材料特性和器件。静水压力和外延应变下的超导性表明,单个样品对外部可变应变有显著的响应,但由于应变通常是样品制作后的固定参数,这一点尚未得到证实。(在柔性金属基底上制作了 (La,Sr)2CuO4薄膜,并对其施加了弯曲应变,以观察应变引起的临界温度(Tc)和电阻率变化。-0.005的压缩弯曲应变将临界温度从23.4 K提高到27.3 K。弯曲应变引起的临界温度变化幅度与掺杂水平和初始外延应变无关。此外,压缩弯曲还提高了不可逆温度,并观察到 Tc 随可逆应变的合理变化。对母体化合物 La2CuO4 的 Ab initio 密度泛函计算表明,低能电子结构对弯曲应变很敏感。在压缩应变下,载流子(空穴)优先注入到 CuO2 平面的面内轨道中,而拉伸应变则导致载流子注入到垂直轨道中,不利于超导。外部应变下的应变敏感型高锝超导体凸显了杯状超导体的一个新方面,从而开启了对超导磁体和液氢容器等低温系统中应力情况的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1