{"title":"Absence of itinerant ferromagnetism in a cobalt-based oxypnictide","authors":"Hua-Xun Li, Hao Jiang, Yi-Qiang Lin, Jia-Xin Li, Shi-Jie Song, Qin-Qing Zhu, Zhi Ren, Guang-Han Cao","doi":"10.1103/physrevmaterials.8.094405","DOIUrl":null,"url":null,"abstract":"We report a layered transition-metal-ordered oxypnictide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Sr</mi><mn>2</mn></msub><msub><mi>CrCoAsO</mi><mn>3</mn></msub></mrow></math>. The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Sr</mi><mn>3</mn></msub><msub><mi>Cr</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>6</mn></msub></mrow></math> unit and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>ThCr</mi><mn>2</mn></msub><msub><mi>Si</mi><mn>2</mn></msub></mrow></math>-type <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>SrCo</mi><mn>2</mn></msub><msub><mi>As</mi><mn>2</mn></msub></mrow></math> block stacking coherently along the crystallographic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math> axis. The measurements of electrical resistivity, magnetic susceptibility, and specific heat indicate metallic conductivity from the CoAs layers and short-range antiferromagnetic ordering in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CrO</mi><mn>2</mn></msub></math> planes. No itinerant-electron ferromagnetism expected in CoAs layers is observed. This result, combined with the first-principles calculations and the previous reports of other CoAs-layer-based materials, suggests that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Co</mi><mo>−</mo><mi>Co</mi></mrow></math> bond length plays a crucial role in the emergence of itinerant ferromagnetism.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094405","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a layered transition-metal-ordered oxypnictide . The new material was synthesized by solid-state reactions under vacuum. It has an intergrowth structure with a perovskite-like unit and -type block stacking coherently along the crystallographic axis. The measurements of electrical resistivity, magnetic susceptibility, and specific heat indicate metallic conductivity from the CoAs layers and short-range antiferromagnetic ordering in the planes. No itinerant-electron ferromagnetism expected in CoAs layers is observed. This result, combined with the first-principles calculations and the previous reports of other CoAs-layer-based materials, suggests that the bond length plays a crucial role in the emergence of itinerant ferromagnetism.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.