{"title":"Integrable Variants of the Toda Lattice","authors":"Ya-Jie Liu, Hui Alan Wang, Xiang-Ke Chang, Xing-Biao Hu, Ying-Nan Zhang","doi":"10.1007/s00332-024-10072-0","DOIUrl":null,"url":null,"abstract":"<p>By introducing bilinear operators of trigonometric type, we propose several novel integrable variants of the famous Toda lattice, two of which can be regarded as integrable discretizations of the Kadomtsev–Petviashvili equation—a universal model describing weakly nonlinear waves in media with dispersion of velocity. We also demonstrate that two one-dimensional reductions of these variants can approximate the nonlinear Schrödinger equation and a generalized nonlinear Schrödinger equation well. It turns out that these equations admit meaningful solutions including solitons, breathers, lumps and rogue waves, which are expressed in terms of explicit and closed forms. In particular, it seems to be the first time that rogue wave solutions have been obtained for Toda-type equations. Furthermore, <i>g</i>-periodic wave solutions are also produced in terms of Riemann theta function. An approximation solution of the three-periodic wave is successfully carried out by using a deep neural network. The introduction of trigonometric-type bilinear operators is also efficient in generating new variants together with rich properties for some other integrable equations.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"71 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10072-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
By introducing bilinear operators of trigonometric type, we propose several novel integrable variants of the famous Toda lattice, two of which can be regarded as integrable discretizations of the Kadomtsev–Petviashvili equation—a universal model describing weakly nonlinear waves in media with dispersion of velocity. We also demonstrate that two one-dimensional reductions of these variants can approximate the nonlinear Schrödinger equation and a generalized nonlinear Schrödinger equation well. It turns out that these equations admit meaningful solutions including solitons, breathers, lumps and rogue waves, which are expressed in terms of explicit and closed forms. In particular, it seems to be the first time that rogue wave solutions have been obtained for Toda-type equations. Furthermore, g-periodic wave solutions are also produced in terms of Riemann theta function. An approximation solution of the three-periodic wave is successfully carried out by using a deep neural network. The introduction of trigonometric-type bilinear operators is also efficient in generating new variants together with rich properties for some other integrable equations.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.