{"title":"Biologically Inspired Pectoral Propulsors with Flapping and Rowing Control for a Specified Stroke Plane Angle","authors":"Bing Luo, Wei Li","doi":"10.1007/s00332-024-10078-8","DOIUrl":null,"url":null,"abstract":"<p>Many flying and swimming creatures have morphing pectoral propulsors (wings or fins) for propulsion, typically with flapping, rowing, and pitching motions; flapping and rowing motions are responsible for the <i>stroke plane angle</i> that is important for a broader performance space of the propulsor, while the stroke plane angle has been less characterized and implemented by artificial propulsors of biomimetic vehicles and thus has lack of stroke plane angle control. In this paper, we consider robotic pectoral propulsors with combined flapping and rowing motions for a stroke plane angle that can be generally specified. We consider two possible rotation axes configurations (i.e., the dependence of the rotation axes for flapping and rowing). For each rotation axes configuration, we propose the kinematic relations between the flapping and rowing motions for a generally specified stroke plane angle and provide the general flapping (or rowing) kinematics as a function of the rowing (or flapping) kinematics, which have not been characterized previously. These results serve as the reference trajectories of the propulsor for specified stroke plane angles and have implications for stroke plane angle control and thus have implications to achieve a broader performance space for biomimetic propulsors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10078-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Many flying and swimming creatures have morphing pectoral propulsors (wings or fins) for propulsion, typically with flapping, rowing, and pitching motions; flapping and rowing motions are responsible for the stroke plane angle that is important for a broader performance space of the propulsor, while the stroke plane angle has been less characterized and implemented by artificial propulsors of biomimetic vehicles and thus has lack of stroke plane angle control. In this paper, we consider robotic pectoral propulsors with combined flapping and rowing motions for a stroke plane angle that can be generally specified. We consider two possible rotation axes configurations (i.e., the dependence of the rotation axes for flapping and rowing). For each rotation axes configuration, we propose the kinematic relations between the flapping and rowing motions for a generally specified stroke plane angle and provide the general flapping (or rowing) kinematics as a function of the rowing (or flapping) kinematics, which have not been characterized previously. These results serve as the reference trajectories of the propulsor for specified stroke plane angles and have implications for stroke plane angle control and thus have implications to achieve a broader performance space for biomimetic propulsors.