Mary J. Ponti, Mackenzie L. Russell, Cristina Díaz Clark, Carl S. Cloyed, Ruth H. Carmichael, Christina L. Johnson, Jennifer C. G. Bloodgood
{"title":"Stranded marine mammal detection by the public, trained responders, and drones using decoy carcasses","authors":"Mary J. Ponti, Mackenzie L. Russell, Cristina Díaz Clark, Carl S. Cloyed, Ruth H. Carmichael, Christina L. Johnson, Jennifer C. G. Bloodgood","doi":"10.1111/mms.13169","DOIUrl":null,"url":null,"abstract":"Stranded marine mammals provide valuable insight into population health of free‐ranging conspecifics; however, the likelihood of carcass detection by the public or trained observers is not well known. To better understand carcass detection rates (CDR), we placed twelve decoy dolphin carcasses around Dauphin Island, Alabama, for 2 weeks, one during peak tourist season and one during the off season. Decoys were placed in regions representing different habitat types (marsh or beach) and levels of human use (low or high). Calls from the public were recorded, and trained observers actively searched for decoys via drone and visual observation either by vessel or UTV and walking. There were 2.5 times more public reports during the peak (<jats:italic>n</jats:italic> = 38) compared to off season (<jats:italic>n</jats:italic> = 15), with most reports being from the high‐traffic beach site during peak season (<jats:italic>n</jats:italic> = 27). Trained observers found more decoys (CDR = 0.88) than the public (CDR = 0.58), however, the public found two decoys that observers did not. Drone searches were slightly more successful (CDR = 0.83) than other methods (CDR = 0.79). Our results indicate that a combination of surveillance methods will enhance carcass detection, and our novel methods can be used across habitat types to improve stranding surveillance, better estimate stranding rates, and inform mortality estimates of many species.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mms.13169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Stranded marine mammals provide valuable insight into population health of free‐ranging conspecifics; however, the likelihood of carcass detection by the public or trained observers is not well known. To better understand carcass detection rates (CDR), we placed twelve decoy dolphin carcasses around Dauphin Island, Alabama, for 2 weeks, one during peak tourist season and one during the off season. Decoys were placed in regions representing different habitat types (marsh or beach) and levels of human use (low or high). Calls from the public were recorded, and trained observers actively searched for decoys via drone and visual observation either by vessel or UTV and walking. There were 2.5 times more public reports during the peak (n = 38) compared to off season (n = 15), with most reports being from the high‐traffic beach site during peak season (n = 27). Trained observers found more decoys (CDR = 0.88) than the public (CDR = 0.58), however, the public found two decoys that observers did not. Drone searches were slightly more successful (CDR = 0.83) than other methods (CDR = 0.79). Our results indicate that a combination of surveillance methods will enhance carcass detection, and our novel methods can be used across habitat types to improve stranding surveillance, better estimate stranding rates, and inform mortality estimates of many species.