Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-09-12 DOI:10.1038/s43246-024-00576-3
Farshad Jafarzadeh, Luigi Angelo Castriotta, Emanuele Calabrò, Pierpaolo Spinelli, Amanda Generosi, Barbara Paci, David Becerril Rodriguez, Marco Luce, Antonio Cricenti, Francesco Di Giacomo, Fabio Matteocci, Francesca Brunetti, Aldo Di Carlo
{"title":"Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area","authors":"Farshad Jafarzadeh, Luigi Angelo Castriotta, Emanuele Calabrò, Pierpaolo Spinelli, Amanda Generosi, Barbara Paci, David Becerril Rodriguez, Marco Luce, Antonio Cricenti, Francesco Di Giacomo, Fabio Matteocci, Francesca Brunetti, Aldo Di Carlo","doi":"10.1038/s43246-024-00576-3","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells have rapidly advanced, achieving over 26% power conversion efficiency on the laboratory scale. However, transitioning to large-scale production remains a challenge due to limitations in conventional fabrication methods like spin coating. Here, we introduce an optimized blade coating process for the scalable fabrication of large-area (15 cm × 15 cm) perovskite solar modules with a nickel oxide hole transport layer, performed in ambient air and utilizing a non-toxic solvent system. Self-assembled monolayers between the nickel oxide and perovskite layer improve the uniformity and morphology of the perovskite film. Perovskite solar modules with a 110 cm2 active area achieve a power conversion efficiency of 12.6%. Moreover, encapsulated modules retained 84% of their initial efficiency after 1,000 hours at 85 °C in air (ISOS-T-1). This study demonstrates progress in the large-scale production of perovskite solar cells that combine efficiency with long-term stability. Perovskite solar cells and have shown great promise on the lab scale, but work is needed to scale-up their fabrication. Here, blade coating is used to fabricate 15 cm×15 cm perovskite modules with a nickel oxide hole transport layer, achieving high power conversion efficiency and stability.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00576-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00576-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells have rapidly advanced, achieving over 26% power conversion efficiency on the laboratory scale. However, transitioning to large-scale production remains a challenge due to limitations in conventional fabrication methods like spin coating. Here, we introduce an optimized blade coating process for the scalable fabrication of large-area (15 cm × 15 cm) perovskite solar modules with a nickel oxide hole transport layer, performed in ambient air and utilizing a non-toxic solvent system. Self-assembled monolayers between the nickel oxide and perovskite layer improve the uniformity and morphology of the perovskite film. Perovskite solar modules with a 110 cm2 active area achieve a power conversion efficiency of 12.6%. Moreover, encapsulated modules retained 84% of their initial efficiency after 1,000 hours at 85 °C in air (ISOS-T-1). This study demonstrates progress in the large-scale production of perovskite solar cells that combine efficiency with long-term stability. Perovskite solar cells and have shown great promise on the lab scale, but work is needed to scale-up their fabrication. Here, blade coating is used to fabricate 15 cm×15 cm perovskite modules with a nickel oxide hole transport layer, achieving high power conversion efficiency and stability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过优化 15 × 15 平方厘米面积上的叶片涂层氧化镍沉积,实现稳定、可持续的过氧化物太阳能模块
过氧化物太阳能电池发展迅速,在实验室规模上实现了超过 26% 的功率转换效率。然而,由于旋涂等传统制造方法的局限性,过渡到大规模生产仍然是一个挑战。在此,我们介绍了一种优化的叶片涂层工艺,用于在环境空气中利用无毒溶剂系统规模化制造带有氧化镍空穴传输层的大面积(15 厘米 × 15 厘米)过氧化物太阳能模块。氧化镍和包晶层之间的自组装单层提高了包晶薄膜的均匀性和形态。活性面积为 110 平方厘米的包光体太阳能模块的功率转换效率达到了 12.6%。此外,封装模块在 85 °C 的空气中经过 1,000 小时后(ISOS-T-1),其初始效率保持了 84%。这项研究表明,在大规模生产兼具效率和长期稳定性的包晶体太阳能电池方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Probing the limits for coherent optical control of a mechanically decoupled defect center in hexagonal boron nitride Diverse electronic landscape of the kagome metal YbTi3Bi4 Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2 Author Correction: Achieving liquid processors by colloidal suspensions for reservoir computing Author Correction: Face-centered cubic carbon as a fourth basic carbon allotrope with properties of intrinsic semiconductors and ultra-wide bandgap
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1