Max L. Neveau, William R. Meier, Hyojin Park, Michael J. Thompson, Nitish Bibhanshu, Catrin Böcher, Tomer Fishman, David Weiss, Matthew F. Chisholm, Orlando Rios, Gerd Duscher
{"title":"Secondary phase increases the elastic modulus of a cast aluminum-cerium alloy","authors":"Max L. Neveau, William R. Meier, Hyojin Park, Michael J. Thompson, Nitish Bibhanshu, Catrin Böcher, Tomer Fishman, David Weiss, Matthew F. Chisholm, Orlando Rios, Gerd Duscher","doi":"10.1038/s43246-024-00611-3","DOIUrl":null,"url":null,"abstract":"Alloying in metal castings is one of the principal methods of strengthening an alloy for various structural and functional applications, but very rarely does it modify an alloy’s elastic modulus. We report a methodology of combining isostructural Laves phases to form a multi-component, high symmetry, isotropic phase that was discovered to enhance the elastic modulus of a cast aluminum alloy to 91.5 ± 7.4 GPa. Flux grown single crystals of the rhombicuboctahedron phase (RCO), so named for the observed morphology, were used to enhance understanding of the structure and mechanical properties of the phase. The pure RCO phase’s structure and site occupancies were co-refined using x-ray and neutron diffraction. Dynamic nanomechanical testing of the cast alloy shows the primary RCO phase has a high, relatively isotropic, elastic modulus. This RCO containing aluminum alloy is found to have a specific modulus that exceeds that of the leading Al, Mg, Steel, and Ti alloys. The elastic properties of alloys are typically insensitive to changes in microstructure. Here, an as-cast Al-Ce alloy achieves a large Young’s modulus of approximately 92 GPa, due to the presence of isotropic, high symmetry secondary phase.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00611-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00611-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alloying in metal castings is one of the principal methods of strengthening an alloy for various structural and functional applications, but very rarely does it modify an alloy’s elastic modulus. We report a methodology of combining isostructural Laves phases to form a multi-component, high symmetry, isotropic phase that was discovered to enhance the elastic modulus of a cast aluminum alloy to 91.5 ± 7.4 GPa. Flux grown single crystals of the rhombicuboctahedron phase (RCO), so named for the observed morphology, were used to enhance understanding of the structure and mechanical properties of the phase. The pure RCO phase’s structure and site occupancies were co-refined using x-ray and neutron diffraction. Dynamic nanomechanical testing of the cast alloy shows the primary RCO phase has a high, relatively isotropic, elastic modulus. This RCO containing aluminum alloy is found to have a specific modulus that exceeds that of the leading Al, Mg, Steel, and Ti alloys. The elastic properties of alloys are typically insensitive to changes in microstructure. Here, an as-cast Al-Ce alloy achieves a large Young’s modulus of approximately 92 GPa, due to the presence of isotropic, high symmetry secondary phase.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.