A Machine Learning Approach for the Prediction of Aqueous Solubility of Pharmaceuticals: A Comparative Model and Dataset Analysis

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-09-09 DOI:10.1039/d4dd00065j
Mohammad Amin Ghanavati, Soroush Ahmadi, Sohrab Rohani
{"title":"A Machine Learning Approach for the Prediction of Aqueous Solubility of Pharmaceuticals: A Comparative Model and Dataset Analysis","authors":"Mohammad Amin Ghanavati, Soroush Ahmadi, Sohrab Rohani","doi":"10.1039/d4dd00065j","DOIUrl":null,"url":null,"abstract":"The effectiveness of drug treatments depends significantly on the water solubility of compounds, influencing bioavailability and therapeutic outcomes. A reliable predictive solubility tool enables drug developers to swiftly identify drugs with low solubility and implement proactive solubility enhancement techniques. The current research proposes three predictive models based on four solubility datasets (ESOL, AQUA, PHYS, OCHEM), encompassing 3942 unique molecules. Three different molecular representations were obtained, including electrostatic potential (ESP) maps, molecular Graph, and tabular features (extracted from ESP maps and tabular Mordred descriptors). We conducted 3942 DFT calculations to acquire ESP maps and extract features from them. Subsequently, we applied two deep learning models, EdgeConv and Graph Convolutional Network (GCN), to the point cloud (ESP) and graph modalities of molecules. In addition, we utilized a random forest-based feature selection on tabular features, followed by mapping with XGBoost. A t-SNE analysis visualized chemical space across datasets and unique molecules, providing valuable insights for model evaluation. The proposed machine learning (ML)-based models, trained on 80% of each dataset and evaluated on the remaining 20%, showcased superior performance, particularly with XGBoost utilizing the extracted and selected tabular features. This yielded average test data Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R2) values of 0.458, 0.613, and 0.918, respectively.","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00065j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of drug treatments depends significantly on the water solubility of compounds, influencing bioavailability and therapeutic outcomes. A reliable predictive solubility tool enables drug developers to swiftly identify drugs with low solubility and implement proactive solubility enhancement techniques. The current research proposes three predictive models based on four solubility datasets (ESOL, AQUA, PHYS, OCHEM), encompassing 3942 unique molecules. Three different molecular representations were obtained, including electrostatic potential (ESP) maps, molecular Graph, and tabular features (extracted from ESP maps and tabular Mordred descriptors). We conducted 3942 DFT calculations to acquire ESP maps and extract features from them. Subsequently, we applied two deep learning models, EdgeConv and Graph Convolutional Network (GCN), to the point cloud (ESP) and graph modalities of molecules. In addition, we utilized a random forest-based feature selection on tabular features, followed by mapping with XGBoost. A t-SNE analysis visualized chemical space across datasets and unique molecules, providing valuable insights for model evaluation. The proposed machine learning (ML)-based models, trained on 80% of each dataset and evaluated on the remaining 20%, showcased superior performance, particularly with XGBoost utilizing the extracted and selected tabular features. This yielded average test data Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R2) values of 0.458, 0.613, and 0.918, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测药物水溶性的机器学习方法:模型和数据集比较分析
药物治疗的效果在很大程度上取决于化合物的水溶性,它影响着生物利用率和治疗效果。可靠的溶解度预测工具可帮助药物开发人员迅速识别溶解度低的药物,并实施积极的溶解度增强技术。目前的研究基于四个溶解度数据集(ESOL、AQUA、PHYS、OCHEM)提出了三种预测模型,涵盖 3942 种独特的分子。我们获得了三种不同的分子表征,包括静电位(ESP)图、分子图和表列特征(从ESP图和表列Mordred描述符中提取)。我们进行了 3942 次 DFT 计算,以获取 ESP 图并从中提取特征。随后,我们将 EdgeConv 和 Graph Convolutional Network (GCN) 这两种深度学习模型应用于分子的点云(ESP)和图模式。此外,我们还在表格特征上使用了基于随机森林的特征选择,然后使用 XGBoost 进行映射。t-SNE 分析可视化跨数据集和独特分子的化学空间,为模型评估提供了宝贵的见解。所提出的基于机器学习(ML)的模型在每个数据集的 80% 数据上进行了训练,并在剩余的 20% 数据上进行了评估,显示出卓越的性能,尤其是在利用提取和选择的表格特征进行 XGBoost 时。测试数据的平均绝对误差 (MAE)、均方根误差 (RMSE) 和 R 平方 (R2) 值分别为 0.458、0.613 和 0.918。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Graph Representation of Zeolitic Crystalline Materials Physics-based reward driven image analysis in microscopy Back cover A Machine Learning Approach for the Prediction of Aqueous Solubility of Pharmaceuticals: A Comparative Model and Dataset Analysis Outstanding Reviewers for Digital Discovery in 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1