Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides.

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2025-01-24 DOI:10.1039/d4dd00219a
Abdulelah S Alshehri, Michael T Bergman, Fengqi You, Carol K Hall
{"title":"Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides.","authors":"Abdulelah S Alshehri, Michael T Bergman, Fengqi You, Carol K Hall","doi":"10.1039/d4dd00219a","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (<i>i.e.</i>, over 10<sup>15</sup> for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods. One step towards addressing this issue is to train deep learning models on experimental or biophysical datasets, permitting faster and cheaper evaluations of peptides. However, deep learning predictions are not always accurate, which could waste time and money due to synthesizing and evaluating false positives. Here, we resolve this issue by combining biophysical modeling data from Peptide Binder Design (PepBD) algorithm, the predictive power and uncertainty quantification of evidential deep learning, and metaheuristic search methods to identify high-affinity PBPs for several common plastics. Molecular dynamics simulations show that the discovered PBPs have greater median adsorption free energies for polyethylene (5%), polypropylene (18%), and polystyrene (34%) relative to PBPs previously designed by PepBD. The impact of including uncertainty quantification in peptide design is demonstrated by the increasing improvement in the median adsorption free energy with decreasing uncertainty. This robust framework accelerates peptide discovery, paving the way for effective, bio-inspired solutions to MP remediation.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4dd00219a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (i.e., over 1015 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods. One step towards addressing this issue is to train deep learning models on experimental or biophysical datasets, permitting faster and cheaper evaluations of peptides. However, deep learning predictions are not always accurate, which could waste time and money due to synthesizing and evaluating false positives. Here, we resolve this issue by combining biophysical modeling data from Peptide Binder Design (PepBD) algorithm, the predictive power and uncertainty quantification of evidential deep learning, and metaheuristic search methods to identify high-affinity PBPs for several common plastics. Molecular dynamics simulations show that the discovered PBPs have greater median adsorption free energies for polyethylene (5%), polypropylene (18%), and polystyrene (34%) relative to PBPs previously designed by PepBD. The impact of including uncertainty quantification in peptide design is demonstrated by the increasing improvement in the median adsorption free energy with decreasing uncertainty. This robust framework accelerates peptide discovery, paving the way for effective, bio-inspired solutions to MP remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塑料污染,尤其是微塑料(MPs),对生态系统和人类健康构成了严重的全球性威胁,因此必须采取创新的补救策略。生物相容性和可生物降解的塑料结合肽(PBPs)提供了一种潜在的解决方案,即通过靶向吸附,随后检测或清除环境中的MP。发现塑料结合肽的一个挑战是可能的肽的组合空间巨大(例如,12-mer 肽的组合空间超过 1015 个),这远远超出了实验或基于生物物理学的计算方法通常可以达到的样本量。解决这一问题的一个方法是在实验或生物物理数据集上训练深度学习模型,从而可以更快、更便宜地评估多肽。然而,深度学习的预测并不总是准确的,这可能会因为合成和评估假阳性而浪费时间和金钱。在这里,我们通过结合多肽粘合剂设计(PepBD)算法的生物物理建模数据、证据深度学习的预测能力和不确定性量化,以及元启发式搜索方法来识别几种常见塑料的高亲和性 PBPs,从而解决了这个问题。分子动力学模拟结果表明,与 PepBD 以前设计的 PBPs 相比,发现的 PBPs 对聚乙烯(5%)、聚丙烯(18%)和聚苯乙烯(34%)的吸附自由能中值更大。随着不确定性的降低,中位吸附自由能也在不断提高,这证明了在多肽设计中加入不确定性量化的影响。这种稳健的框架加快了多肽的发现,为生物启发的有效MP修复方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1