Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models

Fengzhe Zhang, Jiajun He, Laurence I. Midgley, Javier Antorán, José Miguel Hernández-Lobato
{"title":"Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models","authors":"Fengzhe Zhang, Jiajun He, Laurence I. Midgley, Javier Antorán, José Miguel Hernández-Lobato","doi":"arxiv-2409.07323","DOIUrl":null,"url":null,"abstract":"Diffusion models have shown promising potential for advancing Boltzmann\nGenerators. However, two critical challenges persist: (1) inherent errors in\nsamples due to model imperfections, and (2) the requirement of hundreds of\nfunctional evaluations (NFEs) to achieve high-quality samples. While existing\nsolutions like importance sampling and distillation address these issues\nseparately, they are often incompatible, as most distillation models lack the\nnecessary density information for importance sampling. This paper introduces a\nnovel sampling method that effectively combines Consistency Models (CMs) with\nimportance sampling. We evaluate our approach on both synthetic energy\nfunctions and equivariant n-body particle systems. Our method produces unbiased\nsamples using only 6-25 NFEs while achieving a comparable Effective Sample Size\n(ESS) to Denoising Diffusion Probabilistic Models (DDPMs) that require\napproximately 100 NFEs.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion models have shown promising potential for advancing Boltzmann Generators. However, two critical challenges persist: (1) inherent errors in samples due to model imperfections, and (2) the requirement of hundreds of functional evaluations (NFEs) to achieve high-quality samples. While existing solutions like importance sampling and distillation address these issues separately, they are often incompatible, as most distillation models lack the necessary density information for importance sampling. This paper introduces a novel sampling method that effectively combines Consistency Models (CMs) with importance sampling. We evaluate our approach on both synthetic energy functions and equivariant n-body particle systems. Our method produces unbiased samples using only 6-25 NFEs while achieving a comparable Effective Sample Size (ESS) to Denoising Diffusion Probabilistic Models (DDPMs) that require approximately 100 NFEs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过一致性模型对玻尔兹曼分布进行高效无偏采样
扩散模型在推动玻尔兹曼发电机的发展方面显示出了巨大的潜力。然而,两个关键挑战依然存在:(1) 模型不完善导致的固有样本误差;(2) 需要数百次功能评估 (NFE) 才能获得高质量样本。虽然现有的解决方案(如重要性采样和蒸馏)可以分别解决这些问题,但它们往往互不兼容,因为大多数蒸馏模型缺乏重要性采样所需的密度信息。本文介绍了一种有效结合一致性模型(CM)和重要性采样的高级采样方法。我们在合成能量函数和等变 n 体粒子系统上评估了我们的方法。我们的方法仅使用 6-25 个 NFE 就能产生无偏样本,同时达到与需要约 100 个 NFE 的去噪扩散概率模型(DDPM)相当的有效样本量(ESS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1