Cartan moving frames and the data manifolds

Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel
{"title":"Cartan moving frames and the data manifolds","authors":"Eliot Tron, Rita Fioresi, Nicolas Couellan, Stéphane Puechmorel","doi":"arxiv-2409.12057","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to employ the language of Cartan moving frames\nto study the geometry of the data manifolds and its Riemannian structure, via\nthe data information metric and its curvature at data points. Using this\nframework and through experiments, explanations on the response of a neural\nnetwork are given by pointing out the output classes that are easily reachable\nfrom a given input. This emphasizes how the proposed mathematical relationship\nbetween the output of the network and the geometry of its inputs can be\nexploited as an explainable artificial intelligence tool.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to employ the language of Cartan moving frames to study the geometry of the data manifolds and its Riemannian structure, via the data information metric and its curvature at data points. Using this framework and through experiments, explanations on the response of a neural network are given by pointing out the output classes that are easily reachable from a given input. This emphasizes how the proposed mathematical relationship between the output of the network and the geometry of its inputs can be exploited as an explainable artificial intelligence tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡坦动帧和数据流形
本文旨在运用卡坦运动帧语言研究数据流形的几何及其黎曼结构、数据信息度量及其在数据点上的曲率。利用这一框架并通过实验,通过指出给定输入容易达到的输出类别来解释神经网络的响应。这就强调了所提出的网络输出与其输入几何之间的数学关系如何能够作为一种可解释的人工智能工具加以利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1