Robust semi-parametric signal detection in particle physics with classifiers decorrelated via optimal transport

Purvasha Chakravarti, Lucas Kania, Olaf Behnke, Mikael Kuusela, Larry Wasserman
{"title":"Robust semi-parametric signal detection in particle physics with classifiers decorrelated via optimal transport","authors":"Purvasha Chakravarti, Lucas Kania, Olaf Behnke, Mikael Kuusela, Larry Wasserman","doi":"arxiv-2409.06399","DOIUrl":null,"url":null,"abstract":"Searches of new signals in particle physics are usually done by training a\nsupervised classifier to separate a signal model from the known Standard Model\nphysics (also called the background model). However, even when the signal model\nis correct, systematic errors in the background model can influence supervised\nclassifiers and might adversely affect the signal detection procedure. To\ntackle this problem, one approach is to use the (possibly misspecified)\nclassifier only to perform a preliminary signal-enrichment step and then to\ncarry out a bump hunt on the signal-rich sample using only the real\nexperimental data. For this procedure to work, we need a classifier constrained\nto be decorrelated with one or more protected variables used for the signal\ndetection step. We do this by considering an optimal transport map of the\nclassifier output that makes it independent of the protected variable(s) for\nthe background. We then fit a semi-parametric mixture model to the distribution\nof the protected variable after making cuts on the transformed classifier to\ndetect the presence of a signal. We compare and contrast this decorrelation\nmethod with previous approaches, show that the decorrelation procedure is\nrobust to moderate background misspecification, and analyse the power of the\nsignal detection test as a function of the cut on the classifier.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Searches of new signals in particle physics are usually done by training a supervised classifier to separate a signal model from the known Standard Model physics (also called the background model). However, even when the signal model is correct, systematic errors in the background model can influence supervised classifiers and might adversely affect the signal detection procedure. To tackle this problem, one approach is to use the (possibly misspecified) classifier only to perform a preliminary signal-enrichment step and then to carry out a bump hunt on the signal-rich sample using only the real experimental data. For this procedure to work, we need a classifier constrained to be decorrelated with one or more protected variables used for the signal detection step. We do this by considering an optimal transport map of the classifier output that makes it independent of the protected variable(s) for the background. We then fit a semi-parametric mixture model to the distribution of the protected variable after making cuts on the transformed classifier to detect the presence of a signal. We compare and contrast this decorrelation method with previous approaches, show that the decorrelation procedure is robust to moderate background misspecification, and analyse the power of the signal detection test as a function of the cut on the classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子物理学中的稳健半参数信号检测,分类器通过最优传输相互关联
粒子物理中新信号的搜索通常是通过训练监督分类器,将信号模型与已知的标准模型物理(也称为背景模型)区分开来。然而,即使信号模型是正确的,背景模型中的系统误差也会影响监督分类器,并可能对信号探测过程产生不利影响。为了解决这个问题,一种方法是仅使用(可能是错误定义的)分类器来执行初步的信号富集步骤,然后仅使用再实验数据对信号丰富的样本进行碰撞检测。为使这一步骤奏效,我们需要一个分类器,它必须与信号检测步骤中使用的一个或多个保护变量不相关。为此,我们需要考虑分类器输出的最佳传输图,使其与背景保护变量无关。然后,我们在对转换后的分类器进行切割后,对受保护变量的分布拟合一个半参数混合模型,以检测信号的存在。我们将这种去相关性方法与以前的方法进行了比较和对比,证明去相关性程序对中等程度的背景误设是稳健的,并分析了信号检测检验的功率与分类器上的切分的函数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1