Variational Search Distributions

Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla
{"title":"Variational Search Distributions","authors":"Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla","doi":"arxiv-2409.06142","DOIUrl":null,"url":null,"abstract":"We develop variational search distributions (VSD), a method for finding\ndiscrete, combinatorial designs of a rare desired class in a batch sequential\nmanner with a fixed experimental budget. We formalize the requirements and\ndesiderata for this problem and formulate a solution via variational inference\nthat fulfill these. In particular, VSD uses off-the-shelf gradient based\noptimization routines, and can take advantage of scalable predictive models. We\nshow that VSD can outperform existing baseline methods on a set of real\nsequence-design problems in various biological systems.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop variational search distributions (VSD), a method for finding discrete, combinatorial designs of a rare desired class in a batch sequential manner with a fixed experimental budget. We formalize the requirements and desiderata for this problem and formulate a solution via variational inference that fulfill these. In particular, VSD uses off-the-shelf gradient based optimization routines, and can take advantage of scalable predictive models. We show that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变量搜索分布
我们开发了变异搜索分布(VSD),这是一种在固定的实验预算下,以批量顺序的方式寻找稀有的理想类别的离散组合设计的方法。我们对这一问题的要求和考虑因素进行了形式化,并通过变异推理提出了一个能满足这些要求的解决方案。特别是,VSD 使用现成的基于梯度的优化程序,并能利用可扩展的预测模型。结果表明,在各种生物系统的一系列实际序列设计问题上,VSD的性能优于现有的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1