Twisted bilayer graphene for enantiomeric sensing of chiral molecules

Álvaro Moreno, Lorenzo Cavicchi, Xia Wang, Mayra Peralta, Maia Vergniory, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero, Claudia Felser, Marco Polini, Frank H. L. Koppens
{"title":"Twisted bilayer graphene for enantiomeric sensing of chiral molecules","authors":"Álvaro Moreno, Lorenzo Cavicchi, Xia Wang, Mayra Peralta, Maia Vergniory, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero, Claudia Felser, Marco Polini, Frank H. L. Koppens","doi":"arxiv-2409.05178","DOIUrl":null,"url":null,"abstract":"Selective sensing of chiral molecules is a key aspect in fields spanning\nbiology, chemistry, and pharmacology. However, conventional optical methods,\nsuch as circular dichroism (CD), encounter limitations owing to weak chiral\nlight-matter interactions. Several strategies have been investigated to enhance\nCD or circularly polarised luminescence (CPL), including superchiral light,\nplasmonic nanoresonators and dielectric nanostructures. However, a compromise\nbetween spatial uniformity and high sensitivity, without requiring specific\nmolecular functionalization, remains a challenge. In this work, we propose a\nnovel approach using twisted bilayer graphene (TBG), a chiral 2D material with\na strong CD peak which energy is tunable through the twist angle. By matching\nthe CD resonance of TBG with the optical transition energy of the molecule, we\nachieve a decay rate enhancement mediated by resonant energy transfer that\ndepends on the electric-magnetic interaction, that is, on the chirality of both\nthe molecules and TBG. This leads to an enantioselective quenching of the\nmolecule fluorescence, allowing to retrieve the molecule chirality from\ntime-resolved photoluminescence measurements. This method demonstrates high\nsensitivity down to single layer of molecules, with the potential to achieve\nthe ultimate goal of single-molecule chirality sensing, while preserving the\nspatial uniformity and integrability of 2D heterostructures.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selective sensing of chiral molecules is a key aspect in fields spanning biology, chemistry, and pharmacology. However, conventional optical methods, such as circular dichroism (CD), encounter limitations owing to weak chiral light-matter interactions. Several strategies have been investigated to enhance CD or circularly polarised luminescence (CPL), including superchiral light, plasmonic nanoresonators and dielectric nanostructures. However, a compromise between spatial uniformity and high sensitivity, without requiring specific molecular functionalization, remains a challenge. In this work, we propose a novel approach using twisted bilayer graphene (TBG), a chiral 2D material with a strong CD peak which energy is tunable through the twist angle. By matching the CD resonance of TBG with the optical transition energy of the molecule, we achieve a decay rate enhancement mediated by resonant energy transfer that depends on the electric-magnetic interaction, that is, on the chirality of both the molecules and TBG. This leads to an enantioselective quenching of the molecule fluorescence, allowing to retrieve the molecule chirality from time-resolved photoluminescence measurements. This method demonstrates high sensitivity down to single layer of molecules, with the potential to achieve the ultimate goal of single-molecule chirality sensing, while preserving the spatial uniformity and integrability of 2D heterostructures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于手性分子对映体传感的扭曲双层石墨烯
手性分子的选择性传感是生物学、化学和药理学等领域的一个关键方面。然而,由于手性光与物质之间的相互作用较弱,圆二色性(CD)等传统光学方法受到了限制。为了增强CD或圆偏振发光(CPL),人们研究了多种策略,包括超手性光、等离子体纳米谐振器和介电纳米结构。然而,如何在空间均匀性和高灵敏度之间取得折衷,同时又不需要特定的分子功能化,仍然是一项挑战。在这项工作中,我们提出了一种使用扭曲双层石墨烯(TBG)的新方法,这种手性二维材料具有很强的 CD 峰,其能量可通过扭曲角度进行调节。通过将 TBG 的 CD 共振与分子的光学转变能相匹配,我们实现了由共振能量转移介导的衰变率增强,而这种能量转移取决于电-磁相互作用,即取决于分子和 TBG 的手性。这导致了分子荧光的对映选择性淬灭,从而可以从时间分辨光致发光测量中获取分子的手性。这种方法显示出低至单层分子的高灵敏度,有望实现单分子手性传感的最终目标,同时保持二维异质结构的空间均匀性和可集成性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light-induced Nonlinear Resonant Spin Magnetization Borophane as substrate for adsorption of He-4: A journey across dimensionality Memory resistor based in GaAs 2D-bilayers: In and out of equilibrium Three-dimensional valley-contrasting sound How does Goldene Stack?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1