Marianne Beringhier, Marco Gigliotti, Paolo Vannucci
{"title":"Rapid identification of the coefficient of moisture expansion of polymer materials by the employment of plates with asymmetric concentration fields","authors":"Marianne Beringhier, Marco Gigliotti, Paolo Vannucci","doi":"10.1177/00219983241268882","DOIUrl":null,"url":null,"abstract":"The paper pursues the development of a novel methodology for the rapid identification of the diffuso-mechanical properties of polymer materials based on the employment of plates subject to asymmetric moisture concentration fields. The study is carried out on epoxy plate samples equipped with a thin aluminium foil on a surface exposed to the environment to promote asymmetric moisture absorption. The asymmetric moisture fields promote deformations of the plate. Mass gain and plate curvatures are measured as a function of time during conditioning. By using a weakly coupled diffuso-mechanical model: 1D Fick’s diffusion model and 2D plane stress hygroelastic model the diffuso-mechanical properties of the material can be then identified. Due to the chosen size of the experimental samples the present study allows the identification of the coefficient of moisture expansion of the epoxy material. For the material under study, the following values can be identified for saturation mass gain, water diffusivity and coefficient of moisture expansion respectively: 1.67%, 0.025 mm<jats:sup>2</jats:sup>.h<jats:sup>−1</jats:sup>, 0.1628.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241268882","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The paper pursues the development of a novel methodology for the rapid identification of the diffuso-mechanical properties of polymer materials based on the employment of plates subject to asymmetric moisture concentration fields. The study is carried out on epoxy plate samples equipped with a thin aluminium foil on a surface exposed to the environment to promote asymmetric moisture absorption. The asymmetric moisture fields promote deformations of the plate. Mass gain and plate curvatures are measured as a function of time during conditioning. By using a weakly coupled diffuso-mechanical model: 1D Fick’s diffusion model and 2D plane stress hygroelastic model the diffuso-mechanical properties of the material can be then identified. Due to the chosen size of the experimental samples the present study allows the identification of the coefficient of moisture expansion of the epoxy material. For the material under study, the following values can be identified for saturation mass gain, water diffusivity and coefficient of moisture expansion respectively: 1.67%, 0.025 mm2.h−1, 0.1628.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).