Onset of turbulence in rotor–stator cavity flows

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-08-28 DOI:10.1017/jfm.2024.536
Yaguang Xie, Qiang Du, Lei Xie, Zhicheng Wang, Siyi Li
{"title":"Onset of turbulence in rotor–stator cavity flows","authors":"Yaguang Xie, Qiang Du, Lei Xie, Zhicheng Wang, Siyi Li","doi":"10.1017/jfm.2024.536","DOIUrl":null,"url":null,"abstract":"Numerous studies have indicated that turbulence typically initiates along the boundary layer of the stationary disk within a rotor–stator cavity. To describe the transition process to turbulence on the stationary side of a closed rotor–stator cavity, a comprehensive approach combining global linear stability analysis with direct numerical simulation was adopted in the present study. The proposed model aligns with that of Yim <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 848, 2018, pp. 631–647), who investigated the stability characteristics of the rotating-disk boundary layer in a rotor–stator cavity. In order to achieve a stable inflow for the stationary-disk boundary layer, we rotate the shroud together with the rotating disk. Through careful global stability analysis, the predominant spiral mode exhibiting the highest instability in the boundary layer of the stationary disk was discerned, corroborating observations from simulations. Initially, the spiral mode undergoes linear amplification, reaches a state of linear saturation and enters the nonlinear regime. Following nonlinear saturation in the flow field, a circular wave mode arises due to the influence of mean flow distortion. As the Reynolds number attained a sufficiently high level, the interplay between the downstream-propagating circular mode and spiral mode amplified disturbances in the boundary layer of the stationary disk, ultimately leading to the development of localised turbulence at the mid-radius of the rotor–stator cavity. Notably, the present study is the first to elucidate the coexistence of laminar–transitional–turbulent flow states in the stationary-disk boundary layer through direct numerical simulations.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"78 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.536","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have indicated that turbulence typically initiates along the boundary layer of the stationary disk within a rotor–stator cavity. To describe the transition process to turbulence on the stationary side of a closed rotor–stator cavity, a comprehensive approach combining global linear stability analysis with direct numerical simulation was adopted in the present study. The proposed model aligns with that of Yim et al. (J. Fluid Mech., vol. 848, 2018, pp. 631–647), who investigated the stability characteristics of the rotating-disk boundary layer in a rotor–stator cavity. In order to achieve a stable inflow for the stationary-disk boundary layer, we rotate the shroud together with the rotating disk. Through careful global stability analysis, the predominant spiral mode exhibiting the highest instability in the boundary layer of the stationary disk was discerned, corroborating observations from simulations. Initially, the spiral mode undergoes linear amplification, reaches a state of linear saturation and enters the nonlinear regime. Following nonlinear saturation in the flow field, a circular wave mode arises due to the influence of mean flow distortion. As the Reynolds number attained a sufficiently high level, the interplay between the downstream-propagating circular mode and spiral mode amplified disturbances in the boundary layer of the stationary disk, ultimately leading to the development of localised turbulence at the mid-radius of the rotor–stator cavity. Notably, the present study is the first to elucidate the coexistence of laminar–transitional–turbulent flow states in the stationary-disk boundary layer through direct numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转子-定子空腔流中湍流的发生
大量研究表明,湍流通常是沿着转子-定子空腔内静止盘的边界层开始的。为了描述封闭转子-定子空腔静止侧向湍流的过渡过程,本研究采用了全局线性稳定性分析与直接数值模拟相结合的综合方法。提出的模型与 Yim 等人(《流体力学》,第 848 卷,2018 年,第 631-647 页)研究转子-定子空腔中旋转盘边界层稳定性特征的模型一致。为了实现静止盘边界层的稳定流入,我们将护罩与旋转盘一起旋转。通过细致的全局稳定性分析,我们确定了静止盘边界层中不稳定性最高的主要螺旋模式,这与模拟观测结果相吻合。最初,螺旋模式经过线性放大,达到线性饱和状态,并进入非线性状态。流场非线性饱和后,由于平均流变形的影响,出现了圆波模式。当雷诺数达到足够高的水平时,顺流传播的圆波模式和螺旋模式之间的相互作用放大了静止圆盘边界层的扰动,最终导致转子-定子空腔中半径处出现局部湍流。值得注意的是,本研究首次通过直接数值模拟阐明了静止盘边界层中层流-过渡流-湍流共存的流动状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1