首页 > 最新文献

Journal of Fluid Mechanics最新文献

英文 中文
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. 剪切稀化粘弹性流体中鞭毛的泵送效率
IF 3.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-11-25 Epub Date: 2024-11-11 DOI: 10.1017/jfm.2024.666
Aaron Barrett, Aaron L Fogelson, M Gregory Forest, Cole Gruninger, Sookkyung Lim, Boyce E Griffith

Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g., sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the swimmer and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency, defined as a particular flow rate divided by the torque required to spin the motor, over this parameter space. Our findings indicate that motor efficiency (measured by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong shear-thinning of the viscoelastic environment.

微生物的运动通常发生在复杂的粘弹性流体环境中,如颈阴道粘液中的精子和生物膜中的细菌。在这种复杂的流体中,微生物产生的应变和应力会在不同的长度和时间尺度范围内储存和松弛,复杂流体会被驱动脱离其线性响应机制。因此,在粘性介质中不可能出现的现象会通过游动体和复杂流体之间的反馈产生,从而使游动效率与推进机制和流体特性共同相关。在这里,我们将鞭毛马达和丝状物特性与流体的弹性松弛和非线性剪切稀化特性结合起来,建立了一个浸没边界计算模型。然后,我们在此参数空间内探讨了游泳效率,即特定流速除以电机旋转所需的扭矩。我们的研究结果表明,粘弹性环境中相对温和或强烈的剪切稀化会提高或降低马达效率(以体积流量衡量)。
{"title":"Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids.","authors":"Aaron Barrett, Aaron L Fogelson, M Gregory Forest, Cole Gruninger, Sookkyung Lim, Boyce E Griffith","doi":"10.1017/jfm.2024.666","DOIUrl":"10.1017/jfm.2024.666","url":null,"abstract":"<p><p>Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g., sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the swimmer and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency, defined as a particular flow rate divided by the torque required to spin the motor, over this parameter space. Our findings indicate that motor efficiency (measured by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong shear-thinning of the viscoelastic environment.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"999 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle chirality does not matter in the large-scale features of strong turbulence. 粒子的手性在强湍流的大尺度特征中并不重要。
IF 3.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-20 eCollection Date: 2024-09-25 DOI: 10.1017/jfm.2024.577
G Piumini, M P A Assen, D Lohse, R Verzicco

We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.

我们利用立方域中均质各向同性湍流的三维直接数值模拟,研究了重型手性有限尺寸惯性粒子的动力学及其对流动的影响。利用沉浸边界法和复杂碰撞模型,进行了四向耦合模拟,并分析了颗粒与流体密度比、湍流强度和颗粒体积分数的影响。我们发现,自由下落的粒子一方面会增加湍流的能量,另一方面也会增强流体的耗散:根据流体参数的组合,前一种或后一种机制会占上风,从而产生增强或减弱的湍流。此外,粒子的奇异性还会导致优先角速度,从而在流体相中产生净涡度。随着湍流的增强,下落颗粒引入的能量变得不那么重要,更强的速度波动改变了固相动力学,使得手性效应与流动的大尺度特征无关。此外,比较手性粒子和球体(相同体积分数)碰撞事件的时间历史表明,前者倾向于缠结,而后者则是冲动反弹。
{"title":"Particle chirality does not matter in the large-scale features of strong turbulence.","authors":"G Piumini, M P A Assen, D Lohse, R Verzicco","doi":"10.1017/jfm.2024.577","DOIUrl":"https://doi.org/10.1017/jfm.2024.577","url":null,"abstract":"<p><p>We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"995 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swirling electrolyte. Part 2. Secondary circulation and its stability 旋转的电解质第 2 部分:二次循环及其稳定性二次循环及其稳定性
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.734
Sergey A. Suslov, Daniel T. Hayes
The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan & Suslov, J. Fluid Mech., vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.
本研究的第一部分(McCloughan & Suslov, J. Fluid Mech., vol. 980, 2024, A59)对发生在电解质浅环形层中的稳定方位角不变电磁驱动流进行了渐近分析,预测了以前未曾发现的双蝶形流动状态的存在。在研究的第 2 部分,我们通过对控制方程进行数值时间积分来证实它的存在。我们观察到一种滞后现象,即对同一组控制参数得到的解的类型取决于初始条件的选择和控制参数的变化方式,这与第 1 部分的分析结果完全一致。随后,我们对新得到的稳定状态进行了线性稳定性分析,并推断出实验观测到的反环形自由表面涡旋出现的背景是两个反向旋转环形结构界面的离心(雷利型)不稳定性导致的。我们确定了这种不稳定结构的定量特征。研究表明,这种结构只能存在于深度不超过某个临界值的足够薄的层中。
{"title":"Swirling electrolyte. Part 2. Secondary circulation and its stability","authors":"Sergey A. Suslov, Daniel T. Hayes","doi":"10.1017/jfm.2024.734","DOIUrl":"https://doi.org/10.1017/jfm.2024.734","url":null,"abstract":"The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan &amp; Suslov, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-similarity and recurrence in stability spectra of near-extreme Stokes waves 近极端斯托克斯波稳定谱的自相似性和递归性
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.626
B. Deconinck, S.A. Dyachenko, A. Semenova

{"title":"Self-similarity and recurrence in stability spectra of near-extreme Stokes waves","authors":"B. Deconinck, S.A. Dyachenko, A. Semenova","doi":"10.1017/jfm.2024.626","DOIUrl":"https://doi.org/10.1017/jfm.2024.626","url":null,"abstract":"<p><img href=\"S0022112024006268_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024006268/resource/name/S0022112024006268_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid–acoustic–structure resonance mechanism of a plane cascade via a low-speed wind tunnel test 通过低速风洞试验研究平面级联的流声结构共振机理
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.693
Rubing Liu, Zefan Chen, Shenghui Xue, Ruixin Lin, Qi Lin
Acoustic resonance is an important factor that contributes to aeroengine compressor failure. In this study, a plane cascade of compressor blades was designed to reproduce acoustic resonance via a low-speed wind tunnel test. A high-frequency hot-wire, microphone and strain gauge were used to synchronously measure the fluid, acoustic and structural parameters. We analysed the variation in the amplitude and frequency of the multi-field parameters with increasing mean flow velocity and explored the multi-field interaction mechanism that induces the acoustic resonance of the plane cascade. The plane cascade effectively reproduced the acoustic resonance phenomenon. The first-order acoustic-mode frequency of the plane cascade flow duct, second-order torsional vibration mode frequency of the blade and shedding mode frequency of the tip clearance leakage vortex were equal under acoustic resonance. The fluid, acoustic and structural fields showed a strong interaction effect, achieving the maximum blade vibration amplitude and causing fatigue cracks of torsional vibration at the blade root. The frequency lock-in region of the compressor plane cascade was divided into an ‘acoustic–structure’ interaction region, a ‘fluid–acoustic–structure’ interaction region and a first-order acoustic-mode dominant region with increasing mean flow velocity, which demonstrates an interesting phenomenon in which the fluid–acoustic–structure modes compete: acoustic mode > blade vibration mode > vortex shedding mode. The results demonstrate a unique approach to the study of acoustic resonance that provides insight into the acoustic resonance mechanism in a cascade of compressor blades.
声共振是导致航空发动机压缩机故障的一个重要因素。在这项研究中,设计了一个压缩机叶片平面级联,通过低速风洞试验重现声共振。使用高频热线、麦克风和应变仪同步测量流体、声学和结构参数。我们分析了多场参数的振幅和频率随平均流速增加而变化的情况,并探索了诱发平面级联声共振的多场相互作用机制。平面级联有效地再现了声共振现象。在声共振作用下,平面级联流道的一阶声学模态频率、叶片的二阶扭转振动模态频率和叶尖间隙泄漏涡的脱落模态频率相等。流体场、声场和结构场产生了强烈的相互作用,使叶片振幅达到最大,并在叶片根部产生了扭转振动疲劳裂纹。压气机平面级联的锁频区被划分为 "声-结构 "相互作用区、"流-声-结构 "相互作用区以及随平均流速增加的一阶声学模式主导区,这表明了一种有趣的流-声-结构模式竞争现象:声学模式;叶片振动模式;涡流脱落模式。研究结果展示了一种独特的声共振研究方法,有助于深入了解压缩机叶片级联的声共振机制。
{"title":"Fluid–acoustic–structure resonance mechanism of a plane cascade via a low-speed wind tunnel test","authors":"Rubing Liu, Zefan Chen, Shenghui Xue, Ruixin Lin, Qi Lin","doi":"10.1017/jfm.2024.693","DOIUrl":"https://doi.org/10.1017/jfm.2024.693","url":null,"abstract":"Acoustic resonance is an important factor that contributes to aeroengine compressor failure. In this study, a plane cascade of compressor blades was designed to reproduce acoustic resonance via a low-speed wind tunnel test. A high-frequency hot-wire, microphone and strain gauge were used to synchronously measure the fluid, acoustic and structural parameters. We analysed the variation in the amplitude and frequency of the multi-field parameters with increasing mean flow velocity and explored the multi-field interaction mechanism that induces the acoustic resonance of the plane cascade. The plane cascade effectively reproduced the acoustic resonance phenomenon. The first-order acoustic-mode frequency of the plane cascade flow duct, second-order torsional vibration mode frequency of the blade and shedding mode frequency of the tip clearance leakage vortex were equal under acoustic resonance. The fluid, acoustic and structural fields showed a strong interaction effect, achieving the maximum blade vibration amplitude and causing fatigue cracks of torsional vibration at the blade root. The frequency lock-in region of the compressor plane cascade was divided into an ‘acoustic–structure’ interaction region, a ‘fluid–acoustic–structure’ interaction region and a first-order acoustic-mode dominant region with increasing mean flow velocity, which demonstrates an interesting phenomenon in which the fluid–acoustic–structure modes compete: acoustic mode &gt; blade vibration mode &gt; vortex shedding mode. The results demonstrate a unique approach to the study of acoustic resonance that provides insight into the acoustic resonance mechanism in a cascade of compressor blades.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"18 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instabilities and particle-induced patterns in co-rotating suspension Taylor–Couette flow 同向旋转悬浮液泰勒-库埃特流中的不稳定性和颗粒诱导模式
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.785
Manojit Ghosh, Meheboob Alam
The first experimental results on pattern transitions in the co-rotation regime (i.e. the rotation ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline1.png"/> <jats:tex-math>$varOmega = omega _o/omega _i > 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline2.png"/> <jats:tex-math>$omega _i$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline3.png"/> <jats:tex-math>$omega _o$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the angular speeds of the inner and outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally buoyant suspension of non-colloidal particles, up to a particle volume fraction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline4.png"/> <jats:tex-math>$phi = 0.3$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute suspensions (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline5.png"/> <jats:tex-math>$phi leq ~0.05$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the non-axisymmetric oscillatory states, such as the spiral vortex flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB) being found with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline6.png"/> <jats:tex-math>$phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline7.png"/> <jats:tex-math>$varOmega geq ~0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. At small co-rotations (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024007857_inline8.png"/> <jats:tex-math>$varOmega sim 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the particles play the dual role of stabilization (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subt
对于非胶体颗粒的中性浮力悬浮液,报告了泰勒-库埃特流(TCF)在共旋转机制(即旋转比 $varOmega = omega _o/omega _i > 0$ ,其中 $omega _i$ 和 $omega _o$ 分别是内圆柱和外圆柱的角速度)中模式转换的首次实验结果,颗粒体积分数最高为 $phi = 0.3$。虽然静止泰勒涡流(TVF)是稀悬浮液的主要分叉状态($phi leq ~0.05$ ),非轴对称振荡状态,如螺旋涡流(SVF)和带状(RIB),随着颗粒载荷的增加而出现主要分岔,在所有 $varOmega geq ~0$ 的情况下,随着 $phi$ 的增加,发现主要分岔状态(TVF/SVF/RIB)总体上不再稳定。在较小的同向旋转($varOmega sim 0$)下,粒子对二级/三级振荡状态起着稳定($phi < 0.1$)和失稳($phi geq ~0.1$)的双重作用。确定了 "粒子诱导 "螺旋涡旋的显著特征,并将其与在反旋转机制下运行的 "流体诱导 "螺旋涡旋的特征进行了对比。
{"title":"Instabilities and particle-induced patterns in co-rotating suspension Taylor–Couette flow","authors":"Manojit Ghosh, Meheboob Alam","doi":"10.1017/jfm.2024.785","DOIUrl":"https://doi.org/10.1017/jfm.2024.785","url":null,"abstract":"The first experimental results on pattern transitions in the co-rotation regime (i.e. the rotation ratio &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline1.png\"/&gt; &lt;jats:tex-math&gt;$varOmega = omega _o/omega _i &gt; 0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline2.png\"/&gt; &lt;jats:tex-math&gt;$omega _i$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline3.png\"/&gt; &lt;jats:tex-math&gt;$omega _o$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; are the angular speeds of the inner and outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally buoyant suspension of non-colloidal particles, up to a particle volume fraction of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline4.png\"/&gt; &lt;jats:tex-math&gt;$phi = 0.3$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute suspensions (&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline5.png\"/&gt; &lt;jats:tex-math&gt;$phi leq ~0.05$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;), the non-axisymmetric oscillatory states, such as the spiral vortex flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB) being found with increasing &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline6.png\"/&gt; &lt;jats:tex-math&gt;$phi$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; for all &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline7.png\"/&gt; &lt;jats:tex-math&gt;$varOmega geq ~0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. At small co-rotations (&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline8.png\"/&gt; &lt;jats:tex-math&gt;$varOmega sim 0$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;), the particles play the dual role of stabilization (&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subt","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"30 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detachment of leading-edge vortex enhances wake capture force production 前缘漩涡的脱离增强了尾流捕获力的产生
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.680
Hao Li, Mostafa R.A. Nabawy

{"title":"Detachment of leading-edge vortex enhances wake capture force production","authors":"Hao Li, Mostafa R.A. Nabawy","doi":"10.1017/jfm.2024.680","DOIUrl":"https://doi.org/10.1017/jfm.2024.680","url":null,"abstract":"<p><img href=\"S0022112024006803_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024006803/resource/name/S0022112024006803_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"75 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence 强制二维流体湍流中的自相似性和直接(enstrophy)级联
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.653
Mateo Reynoso, Dmitriy Zhigunov, Roman O. Grigoriev

{"title":"Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence","authors":"Mateo Reynoso, Dmitriy Zhigunov, Roman O. Grigoriev","doi":"10.1017/jfm.2024.653","DOIUrl":"https://doi.org/10.1017/jfm.2024.653","url":null,"abstract":"<p><img href=\"S0022112024006530_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024006530/resource/name/S0022112024006530_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric oscillations of the sessile drop 无梗水滴的参数振荡
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-19 DOI: 10.1017/jfm.2024.632
D. Ding, M.J. Sayyari, J.B. Bostwick

{"title":"Parametric oscillations of the sessile drop","authors":"D. Ding, M.J. Sayyari, J.B. Bostwick","doi":"10.1017/jfm.2024.632","DOIUrl":"https://doi.org/10.1017/jfm.2024.632","url":null,"abstract":"<p><img href=\"S0022112024006323_figAb.png\" mimesubtype=\"png\" mimetype=\"image\" orientation=\"\" position=\"\" src=\"https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112024006323/resource/name/S0022112024006323_figAb.png?pub-status=live\" type=\"\"/></p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"42 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal boundary layer dynamics in low-Prandtl-number Rayleigh–Bénard convection 低勃朗特数雷利-贝纳德对流中的热边界层动力学
IF 3.7 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-18 DOI: 10.1017/jfm.2024.629
Nayoung Kim, Felix Schindler, Tobias Vogt, Sven Eckert
In this experimental study, we explore the dynamics of the thermal boundary layer in liquid metal Rayleigh–Bénard convection, covering the parameter ranges of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline1.png"/> <jats:tex-math>$0.026 leq$</jats:tex-math> </jats:alternatives> </jats:inline-formula> Prandtl numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline2.png"/> <jats:tex-math>$(Pr) leq 0.033$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and Rayleigh numbers (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline3.png"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline4.png"/> <jats:tex-math>$2.9times 10^9$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our research focuses on characterising the thermal boundary layer near the top plate of a cylindrical convection cell with an aspect ratio of 0.5, distinguishing between two distinct regions: the shear-dominated region around the centre of the top plate and a location near the side wall where the boundary layer is expected to be affected by the impact or ejection of thermal plumes. The dependencies of the boundary layer thickness on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline5.png"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> at these positions reveal deviating scaling exponents with the difference diminishing as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline6.png"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases. We find stronger fluctuations in the boundary layer and increasing deviation from the Prandtl–Blasius–Pohlhausen profile with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline7.png"/> <jats:tex-math>$Ra$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, as well as in the measurements outside the centre region. Our data illustrate the complex interplay between flow dynamics and thermal transport in low-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112024006293_inline8.png"/> <jats:tex-math>$Pr$
在这项实验研究中,我们探索了液态金属雷利-贝纳德对流中热边界层的动力学,涵盖的参数范围为 0.026 leq$ Prandtl 数 $ (Pr) leq 0.033$ 和雷利数 ( $Ra$ ) 高达 2.9/times 10^9$ 。我们的研究重点是确定长宽比为 0.5 的圆柱形对流单元顶板附近热边界层的特征,区分两个不同的区域:顶板中心周围以剪切力为主的区域和靠近侧壁的位置,预计边界层会受到热羽流冲击或喷射的影响。在这些位置,边界层厚度对 $Ra$ 的依赖关系显示出不同的缩放指数,差异随着 $Ra$ 的增加而减小。我们发现随着 $Ra$ 的增加,边界层的波动更强,与普朗特-巴拉斯-波尔豪森曲线的偏差也越来越大,中心区域以外的测量结果也是如此。我们的数据说明了低 $Pr$ 对流中流动动力学与热传输之间复杂的相互作用。
{"title":"Thermal boundary layer dynamics in low-Prandtl-number Rayleigh–Bénard convection","authors":"Nayoung Kim, Felix Schindler, Tobias Vogt, Sven Eckert","doi":"10.1017/jfm.2024.629","DOIUrl":"https://doi.org/10.1017/jfm.2024.629","url":null,"abstract":"In this experimental study, we explore the dynamics of the thermal boundary layer in liquid metal Rayleigh–Bénard convection, covering the parameter ranges of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline1.png\"/&gt; &lt;jats:tex-math&gt;$0.026 leq$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; Prandtl numbers &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline2.png\"/&gt; &lt;jats:tex-math&gt;$(Pr) leq 0.033$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and Rayleigh numbers (&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline3.png\"/&gt; &lt;jats:tex-math&gt;$Ra$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;) up to &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline4.png\"/&gt; &lt;jats:tex-math&gt;$2.9times 10^9$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. Our research focuses on characterising the thermal boundary layer near the top plate of a cylindrical convection cell with an aspect ratio of 0.5, distinguishing between two distinct regions: the shear-dominated region around the centre of the top plate and a location near the side wall where the boundary layer is expected to be affected by the impact or ejection of thermal plumes. The dependencies of the boundary layer thickness on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline5.png\"/&gt; &lt;jats:tex-math&gt;$Ra$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; at these positions reveal deviating scaling exponents with the difference diminishing as &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline6.png\"/&gt; &lt;jats:tex-math&gt;$Ra$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; increases. We find stronger fluctuations in the boundary layer and increasing deviation from the Prandtl–Blasius–Pohlhausen profile with increasing &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline7.png\"/&gt; &lt;jats:tex-math&gt;$Ra$&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, as well as in the measurements outside the centre region. Our data illustrate the complex interplay between flow dynamics and thermal transport in low-&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006293_inline8.png\"/&gt; &lt;jats:tex-math&gt;$Pr$","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"74 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fluid Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1