Mohamed Amine Merzouk, Christopher Neal, Joséphine Delas, Reda Yaich, Nora Boulahia-Cuppens, Frédéric Cuppens
{"title":"Adversarial robustness of deep reinforcement learning-based intrusion detection","authors":"Mohamed Amine Merzouk, Christopher Neal, Joséphine Delas, Reda Yaich, Nora Boulahia-Cuppens, Frédéric Cuppens","doi":"10.1007/s10207-024-00903-2","DOIUrl":null,"url":null,"abstract":"<p>Machine learning techniques, including Deep Reinforcement Learning (DRL), enhance intrusion detection systems by adapting to new threats. However, DRL’s reliance on vulnerable deep neural networks leads to susceptibility to adversarial examples-perturbations designed to evade detection. While adversarial examples are well-studied in deep learning, their impact on DRL-based intrusion detection remains underexplored, particularly in critical domains. This article conducts a thorough analysis of DRL-based intrusion detection’s vulnerability to adversarial examples. It systematically evaluates key hyperparameters such as DRL algorithms, neural network depth, and width, impacting agents’ robustness. The study extends to black-box attacks, demonstrating adversarial transferability across DRL algorithms. Findings emphasize neural network architecture’s critical role in DRL agent robustness, addressing underfitting and overfitting challenges. Practical implications include insights for optimizing DRL-based intrusion detection agents to enhance performance and resilience. Experiments encompass multiple DRL algorithms tested on three datasets: NSL-KDD, UNSW-NB15, and CICIoV2024, against gradient-based adversarial attacks, with publicly available implementation code.\n</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"19 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00903-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques, including Deep Reinforcement Learning (DRL), enhance intrusion detection systems by adapting to new threats. However, DRL’s reliance on vulnerable deep neural networks leads to susceptibility to adversarial examples-perturbations designed to evade detection. While adversarial examples are well-studied in deep learning, their impact on DRL-based intrusion detection remains underexplored, particularly in critical domains. This article conducts a thorough analysis of DRL-based intrusion detection’s vulnerability to adversarial examples. It systematically evaluates key hyperparameters such as DRL algorithms, neural network depth, and width, impacting agents’ robustness. The study extends to black-box attacks, demonstrating adversarial transferability across DRL algorithms. Findings emphasize neural network architecture’s critical role in DRL agent robustness, addressing underfitting and overfitting challenges. Practical implications include insights for optimizing DRL-based intrusion detection agents to enhance performance and resilience. Experiments encompass multiple DRL algorithms tested on three datasets: NSL-KDD, UNSW-NB15, and CICIoV2024, against gradient-based adversarial attacks, with publicly available implementation code.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.