Cheng Li, Yan Yang, William H. Matthaeus, Bin Jiang, Minping Wan, Shiyi Chen
{"title":"Non-universality and dissipative anomaly in compressible magnetohydrodynamic turbulence","authors":"Cheng Li, Yan Yang, William H. Matthaeus, Bin Jiang, Minping Wan, Shiyi Chen","doi":"10.1017/jfm.2024.545","DOIUrl":null,"url":null,"abstract":"We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline1.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> fits well with the model <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline2.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon } = \\mathcal {C}_{\\varepsilon,\\infty } + \\mathcal {D}/R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all levels of flow compressibility considered here, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline3.png\"/> <jats:tex-math>$R_L^-$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the generalized large-scale Reynolds number. The asymptotic value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005457_inline4.png\"/> <jats:tex-math>$\\mathcal {C}_{\\varepsilon,\\infty }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.