Asymptotics of the centre-mode instability in viscoelastic channel flow: with and without inertia

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-08-22 DOI:10.1017/jfm.2024.500
Rich R. Kerswell, Jacob Page
{"title":"Asymptotics of the centre-mode instability in viscoelastic channel flow: with and without inertia","authors":"Rich R. Kerswell, Jacob Page","doi":"10.1017/jfm.2024.500","DOIUrl":null,"url":null,"abstract":"Motivated by the recent numerical results of Khalid <jats:italic>et al.</jats:italic> (<jats:italic>Phys. Rev. Lett.</jats:italic>, vol. 127, 2021, 134502), we consider the large-Weissenberg-number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline1.png\"/> <jats:tex-math>$W$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) asymptotics of the centre mode instability in inertialess viscoelastic channel flow. The instability is of the critical layer type in the distinguished ultra-dilute limit where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline2.png\"/> <jats:tex-math>$W(1-\\beta )=O(1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline3.png\"/> <jats:tex-math>$W \\rightarrow \\infty$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline4.png\"/> <jats:tex-math>$\\beta$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the ratio of solvent-to-total viscosity). In contrast to centre modes in the Orr–Sommerfeld equation, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline5.png\"/> <jats:tex-math>$1-c=O(1)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline6.png\"/> <jats:tex-math>$W \\rightarrow \\infty$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline7.png\"/> <jats:tex-math>$c$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the phase speed normalised by the centreline speed as a central ‘outer’ region is always needed to adjust the non-zero cross-stream velocity at the critical layer down to zero at the centreline. The critical layer acts as a pair of intense ‘bellows’ which blows the flow streamlines apart locally and then sucks them back together again. This compression/rarefaction amplifies the streamwise-normal polymer stress which in turn drives the streamwise flow through local polymer stresses at the critical layer. The streamwise flow energises the cross-stream flow via continuity which in turn intensifies the critical layer to close the cycle. We also treat the large-Reynolds-number (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline8.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) asymptotic structure of the upper (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline9.png\"/> <jats:tex-math>$1-c=O(Re^{-2/3})$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and lower branches of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline10.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula>–<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005007_inline11.png\"/> <jats:tex-math>$W$</jats:tex-math> </jats:alternatives> </jats:inline-formula> neutral curve, confirming the inferred scalings from previous numerical computations. Finally, we remark that the viscoelastic centre-mode instability was actually first observed in viscoelastic Kolmogorov flow by Boffetta <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 523, 2005, pp. 161–170).","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.500","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the recent numerical results of Khalid et al. (Phys. Rev. Lett., vol. 127, 2021, 134502), we consider the large-Weissenberg-number ( $W$ ) asymptotics of the centre mode instability in inertialess viscoelastic channel flow. The instability is of the critical layer type in the distinguished ultra-dilute limit where $W(1-\beta )=O(1)$ as $W \rightarrow \infty$ ( $\beta$ is the ratio of solvent-to-total viscosity). In contrast to centre modes in the Orr–Sommerfeld equation, $1-c=O(1)$ as $W \rightarrow \infty$ , where $c$ is the phase speed normalised by the centreline speed as a central ‘outer’ region is always needed to adjust the non-zero cross-stream velocity at the critical layer down to zero at the centreline. The critical layer acts as a pair of intense ‘bellows’ which blows the flow streamlines apart locally and then sucks them back together again. This compression/rarefaction amplifies the streamwise-normal polymer stress which in turn drives the streamwise flow through local polymer stresses at the critical layer. The streamwise flow energises the cross-stream flow via continuity which in turn intensifies the critical layer to close the cycle. We also treat the large-Reynolds-number ( $Re$ ) asymptotic structure of the upper (where $1-c=O(Re^{-2/3})$ ) and lower branches of the $Re$ $W$ neutral curve, confirming the inferred scalings from previous numerical computations. Finally, we remark that the viscoelastic centre-mode instability was actually first observed in viscoelastic Kolmogorov flow by Boffetta et al. (J. Fluid Mech., vol. 523, 2005, pp. 161–170).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘弹性通道流中心模式不稳定性的渐近学:有惯性和无惯性
受 Khalid 等人最近的数值结果(《物理评论快报》,第 127 卷,2021 年,134502 期)的启发,我们考虑了无惯性粘弹性通道流中中心模不稳定性的大韦森伯格数($W$)渐近。该不稳定性属于超稀释极限下的临界层类型,当 $W \rightarrow \infty$ 时,$W(1-\beta)=O(1)$ ($\beta$ 是溶剂与总粘度之比)。与 Orr-Sommerfeld 方程中的中心模式相反,$1-c=O(1)$为$W \rightarrow \infty$,其中$c$为按中心线速度归一化的相速度,因为总是需要一个中心 "外部 "区域来调整临界层上的非零横流速度,使其在中心线上降为零。临界层就像一对强烈的 "风箱",将流线局部吹散,然后再将其吸回。这种压缩/还原放大了流向正常聚合物应力,反过来又通过临界层的局部聚合物应力推动流向流动。流向流通过连续性为横向流提供能量,而横向流又反过来加强临界层,从而结束循环。我们还对 $Re$ - $W$ 中性曲线的上分支(其中 $1-c=O(Re^{-2/3}$ )和下分支的大雷诺数($Re$)渐近结构进行了处理,证实了之前数值计算中推断出的标度。最后,我们要指出的是,粘弹性中心模式不稳定性实际上是由 Boffetta 等人首次在粘弹性 Kolmogorov 流动中观察到的(《流体力学》,第 523 卷,2005 年,第 161-170 页)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1