Andressa de Oliveira Almeida, Rafael Mendes Coelho, Ângelo Rafael Machado, Helen Rodrigues Martins, Arnaldo César Pereira, Fred Luciano Neves Santos, Paola Alejandra Fiorani Celedon, Lucas Franco Ferreira
{"title":"Low-cost immunosensing approach for Chagas disease: exploiting modified pencil graphite electrodes with polymer films","authors":"Andressa de Oliveira Almeida, Rafael Mendes Coelho, Ângelo Rafael Machado, Helen Rodrigues Martins, Arnaldo César Pereira, Fred Luciano Neves Santos, Paola Alejandra Fiorani Celedon, Lucas Franco Ferreira","doi":"10.1007/s10008-024-06069-0","DOIUrl":null,"url":null,"abstract":"<p>Chagas disease (CD) is an endemic disease in America that affects impoverished communities. It is caused by the protozoan <i>Trypanosoma cruzi</i>, which is transmitted by triatomine insects known as kissing bugs. Considering the treatment effectiveness, early detection of the disease is crucial to control its impact on public health. In this study, we developed a low-cost immunosensor in which pencil graphite electrodes (PGEs) were functionalized by electropolymerization of monomers 2-aminobenzamide (2AB), 4-aminobenzoic acid (4ABA), 4-hydroxybenzoic acid (4HBA), 4-hydroxyphenylacetic acid (4HPA), and 4-aminophenylacetic acid (4APA). Electrochemical and morphological studies confirmed the successful modification of PGEs for all investigated compounds. The bioreceptor IBMP 8.1, a recombinant antigen, was immobilized on each functionalized platform. Electrochemical impedance spectroscopy identified poly(4HPA) as the most effective material for functionalizing PGEs and consequently recognizing the anti-<i>T. cruzi</i> antibodies, leading to their selection for subsequent optimization of the transducer. The use of silver nanoparticles to improve sensitivity was also investigated. The conditions for immobilizing the antigen, blocking the protein, and the dilution and response time of the device were optimized. Cross-reactivity studies with other diseases have demonstrated the high specificity of immunosensors. Reproducibility and repeatability tests showed relative standard deviation values of 7.3% (± 2.4) and 5.6% (± 1.8), respectively, for the 20 sensors. Furthermore, the stability over a three-month period (<i>n</i> = 20) showed a 32% decrease in response at 25 °C and a 12% decrease at 4 °C. These results indicated the potential of PGE/poly(4HPA) for rapid and accurate CD detection.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06069-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Chagas disease (CD) is an endemic disease in America that affects impoverished communities. It is caused by the protozoan Trypanosoma cruzi, which is transmitted by triatomine insects known as kissing bugs. Considering the treatment effectiveness, early detection of the disease is crucial to control its impact on public health. In this study, we developed a low-cost immunosensor in which pencil graphite electrodes (PGEs) were functionalized by electropolymerization of monomers 2-aminobenzamide (2AB), 4-aminobenzoic acid (4ABA), 4-hydroxybenzoic acid (4HBA), 4-hydroxyphenylacetic acid (4HPA), and 4-aminophenylacetic acid (4APA). Electrochemical and morphological studies confirmed the successful modification of PGEs for all investigated compounds. The bioreceptor IBMP 8.1, a recombinant antigen, was immobilized on each functionalized platform. Electrochemical impedance spectroscopy identified poly(4HPA) as the most effective material for functionalizing PGEs and consequently recognizing the anti-T. cruzi antibodies, leading to their selection for subsequent optimization of the transducer. The use of silver nanoparticles to improve sensitivity was also investigated. The conditions for immobilizing the antigen, blocking the protein, and the dilution and response time of the device were optimized. Cross-reactivity studies with other diseases have demonstrated the high specificity of immunosensors. Reproducibility and repeatability tests showed relative standard deviation values of 7.3% (± 2.4) and 5.6% (± 1.8), respectively, for the 20 sensors. Furthermore, the stability over a three-month period (n = 20) showed a 32% decrease in response at 25 °C and a 12% decrease at 4 °C. These results indicated the potential of PGE/poly(4HPA) for rapid and accurate CD detection.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.