{"title":"Evolving code with a large language model","authors":"Erik Hemberg, Stephen Moskal, Una-May O’Reilly","doi":"10.1007/s10710-024-09494-2","DOIUrl":null,"url":null,"abstract":"<p>Algorithms that use Large Language Models (LLMs) to evolve code arrived on the Genetic Programming (GP) scene very recently. We present LLM_GP, a general LLM-based evolutionary algorithm designed to evolve code. Like GP, it uses evolutionary operators, but its designs and implementations of those operators significantly differ from GP’s because they enlist an LLM, using prompting and the LLM’s pre-trained pattern matching and sequence completion capability. We also present a demonstration-level variant of LLM_GP and share its code. By presentations that range from formal to hands-on, we cover design and LLM-usage considerations as well as the scientific challenges that arise when using an LLM for genetic programming.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"5 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10710-024-09494-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Algorithms that use Large Language Models (LLMs) to evolve code arrived on the Genetic Programming (GP) scene very recently. We present LLM_GP, a general LLM-based evolutionary algorithm designed to evolve code. Like GP, it uses evolutionary operators, but its designs and implementations of those operators significantly differ from GP’s because they enlist an LLM, using prompting and the LLM’s pre-trained pattern matching and sequence completion capability. We also present a demonstration-level variant of LLM_GP and share its code. By presentations that range from formal to hands-on, we cover design and LLM-usage considerations as well as the scientific challenges that arise when using an LLM for genetic programming.
期刊介绍:
A unique source reporting on methods for artificial evolution of programs and machines...
Reports innovative and significant progress in automatic evolution of software and hardware.
Features both theoretical and application papers.
Covers hardware implementations, artificial life, molecular computing and emergent computation techniques.
Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.