{"title":"Improvement of Electrochemical Performance of Lithium-Ion Anode Materials by Local Oxidation of Multivalent Metal Oxides (CoO)","authors":"Zhiqiang Liu, Hui Li, Zhiteng Wang, Xiaobing Li, Huixin Lan, Zhenhe Zhu, Yi Zhuang, Yuchen Wu, Jiajia Li, Huan Yao, Runbo Gao","doi":"10.1007/s11663-024-03271-3","DOIUrl":null,"url":null,"abstract":"<p>Efficient and stable lithium-ion batteries (LIBs) have garnered considerable attention; yet, the development of anode electrode materials continues to pose substantial challenges. While CoO electrode material boasts an ideal specific theoretical capacity, it is not without drawbacks, including significant volume expansion and concerns over safety performance, which hinder its viability as an anode material. In this research, we synthesized CoO/Co<sub>3</sub>O<sub>4</sub> through a straightforward secondary hydrothermal treatment that locally oxidizes CoO, simultaneously creating oxygen vacancies. The incorporation of oxygen vacancies enhances the material’s internal conductivity and expedites the diffusion of electrons and ions, culminating in superior rate performance. Furthermore, the heterojunction structure diminishes the diffusion barrier, significantly enhancing the electrode’s reaction kinetics and overall electrochemical performance. At a modest current density of 0.1 A g<sup>−1</sup>, the CoO/Co<sub>3</sub>O<sub>4</sub> composite demonstrates enhanced cycling stability, delivering a capacity of 1022 mAh g<sup>−1</sup> after 100 cycles. Remarkably, even at an elevated current density of 1 A g<sup>−1</sup>, it sustains a capacity of 768.8 mAh g<sup>−1</sup> over 400 cycles. The method of creating oxygen vacancies <i>via</i> autoxidation may pave the way for the advancement of multivalent oxide anode materials.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03271-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and stable lithium-ion batteries (LIBs) have garnered considerable attention; yet, the development of anode electrode materials continues to pose substantial challenges. While CoO electrode material boasts an ideal specific theoretical capacity, it is not without drawbacks, including significant volume expansion and concerns over safety performance, which hinder its viability as an anode material. In this research, we synthesized CoO/Co3O4 through a straightforward secondary hydrothermal treatment that locally oxidizes CoO, simultaneously creating oxygen vacancies. The incorporation of oxygen vacancies enhances the material’s internal conductivity and expedites the diffusion of electrons and ions, culminating in superior rate performance. Furthermore, the heterojunction structure diminishes the diffusion barrier, significantly enhancing the electrode’s reaction kinetics and overall electrochemical performance. At a modest current density of 0.1 A g−1, the CoO/Co3O4 composite demonstrates enhanced cycling stability, delivering a capacity of 1022 mAh g−1 after 100 cycles. Remarkably, even at an elevated current density of 1 A g−1, it sustains a capacity of 768.8 mAh g−1 over 400 cycles. The method of creating oxygen vacancies via autoxidation may pave the way for the advancement of multivalent oxide anode materials.