{"title":"Effect of Graphene Nanoparticles on Slurry Erosion Behavior of High-Velocity Oxy-Fuel (HVOF)-Sprayed Mo2C and Co–Ni-Based Coatings Over SS304 Steel","authors":"Nitin Kumar, Jaspal Singh Gill","doi":"10.1007/s11663-024-03249-1","DOIUrl":null,"url":null,"abstract":"<p>The present study delves into the challenges of slurry erosion in hydropower plant components, particularly focusing on Stainless-Steel 304 (SS304) limitations under high-velocity conditions. It proposes Mo<sub>2</sub>C coating combinations applied <i>via</i> High-Velocity Oxy-Fuel (HVOF) spraying as a promising solution due to their high hardness, wear, and corrosion resistance. Three coatings (Coating A, Coating B, and Coating C) were formulated with varying Mo<sub>2</sub>C, Co–Ni, and graphene nanoparticles (GNP) percentages, demonstrating unique erosion-resistant properties. Microscopic analysis revealed wear mechanisms, with Coating A displaying particle breakage, Coating B exhibiting fractured Mo<sub>2</sub>C particles, and Coating C showing dynamic interactions with GNP, enhancing resistance. The findings suggest that tailored coatings incorporating GNP offer potential for erosion resistance improvement, prompting further exploration into optimizing GNP concentrations, refining deposition techniques, and assessing long-term durability under diverse operational conditions.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03249-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study delves into the challenges of slurry erosion in hydropower plant components, particularly focusing on Stainless-Steel 304 (SS304) limitations under high-velocity conditions. It proposes Mo2C coating combinations applied via High-Velocity Oxy-Fuel (HVOF) spraying as a promising solution due to their high hardness, wear, and corrosion resistance. Three coatings (Coating A, Coating B, and Coating C) were formulated with varying Mo2C, Co–Ni, and graphene nanoparticles (GNP) percentages, demonstrating unique erosion-resistant properties. Microscopic analysis revealed wear mechanisms, with Coating A displaying particle breakage, Coating B exhibiting fractured Mo2C particles, and Coating C showing dynamic interactions with GNP, enhancing resistance. The findings suggest that tailored coatings incorporating GNP offer potential for erosion resistance improvement, prompting further exploration into optimizing GNP concentrations, refining deposition techniques, and assessing long-term durability under diverse operational conditions.