Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu
{"title":"Recruitment of USP10 by GCS1 to deubiquitinate GRP78 promotes the progression of colorectal cancer via alleviating endoplasmic reticulum stress","authors":"Yang Chen, Hengyang Shen, Zhenling Wang, Changzhi Huang, Hongqiang Zhang, Yu Shao, Ying Tong, Lei Xu, Yunfei Lu, Zan Fu","doi":"10.1186/s13046-024-03176-8","DOIUrl":null,"url":null,"abstract":"Long-term accumulation of misfolded proteins leads to endoplasmic reticulum (ER) stress in colorectal cancer (CRC). However, the precise pathways controlling the decision between survival and apoptosis in CRC are unclear. Therefore, in this study, we investigated the function and molecular mechanism of glucosidase I (GCS1) in regulating ER stress in CRC. A public database was used to confirm the expression level of GCS1 in CRC and normal tissues. Clinical samples from our center were used to confirm the mRNA and protein expression levels of GCS1. Cell proliferation, migration, invasion, and apoptosis assays revealed the biological role of GCS1. Immunohistochemical techniques were used to evaluate the expression of key proteins in subcutaneous implanted tumors in nude mice, which provided further evidence for the biological function of GCS1 in promoting cancer in vivo. The results of coimmunoprecipitation-mass spectrometry analysis and immunofluorescence colocalization analysis the interaction between GCS1 and GRP78. In addition, the mechanism of action of USP10, GRP78, and GCS1 at the post- translational level was investigated. Finally, a tissue microarray was used to examine the connection between GCS1 and GRP78 expression and intracellular localization of these proteins using immunohistochemistry and immunofluorescence. The experimental results revealed that GCS1 was substantially expressed in CRC, with higher expression indicating a worse prognosis. Thus, GCS1 can enhance the proliferation and metastasis while inhibiting the apoptosis of CRC cells both in vivo and in vitro. Mechanistically, GCS1 binds to GRP78, recruits USP10 for deubiquitination of GRP78 to promote its degradation, and decreases ER stress-mediated apoptosis, increasing CRC cell proliferation and metastasis. In summary, GCS1 stimulates CRC growth and migration and reduces ER stress-mediated apoptosis via USP10-mediated deubiquitination of GRP78. Our findings identify a possible therapeutic target for CRC.","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"36 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03176-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term accumulation of misfolded proteins leads to endoplasmic reticulum (ER) stress in colorectal cancer (CRC). However, the precise pathways controlling the decision between survival and apoptosis in CRC are unclear. Therefore, in this study, we investigated the function and molecular mechanism of glucosidase I (GCS1) in regulating ER stress in CRC. A public database was used to confirm the expression level of GCS1 in CRC and normal tissues. Clinical samples from our center were used to confirm the mRNA and protein expression levels of GCS1. Cell proliferation, migration, invasion, and apoptosis assays revealed the biological role of GCS1. Immunohistochemical techniques were used to evaluate the expression of key proteins in subcutaneous implanted tumors in nude mice, which provided further evidence for the biological function of GCS1 in promoting cancer in vivo. The results of coimmunoprecipitation-mass spectrometry analysis and immunofluorescence colocalization analysis the interaction between GCS1 and GRP78. In addition, the mechanism of action of USP10, GRP78, and GCS1 at the post- translational level was investigated. Finally, a tissue microarray was used to examine the connection between GCS1 and GRP78 expression and intracellular localization of these proteins using immunohistochemistry and immunofluorescence. The experimental results revealed that GCS1 was substantially expressed in CRC, with higher expression indicating a worse prognosis. Thus, GCS1 can enhance the proliferation and metastasis while inhibiting the apoptosis of CRC cells both in vivo and in vitro. Mechanistically, GCS1 binds to GRP78, recruits USP10 for deubiquitination of GRP78 to promote its degradation, and decreases ER stress-mediated apoptosis, increasing CRC cell proliferation and metastasis. In summary, GCS1 stimulates CRC growth and migration and reduces ER stress-mediated apoptosis via USP10-mediated deubiquitination of GRP78. Our findings identify a possible therapeutic target for CRC.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.